Worksheet 10 - Section 2.5

(1) Find the derivative of the function.

(a)
$$F(x) = (5x^6 + 2x^3)^4$$

(b)
$$y = (\frac{x^2 + 1}{x^2 - 1})^3$$

(c)
$$f(x) = \sin(x \cos x)$$

(d)
$$G(y) = \frac{(y-1)^4}{(y^2+2y)^5}$$

(e)
$$A(t) = \frac{1}{(\cos t + \tan t)^2}$$

(f)
$$h(v) = v\sqrt[3]{1+v^2}$$

(g)
$$h(t) = (t+1)^{2/3}(2t^2-1)^3$$

(h)
$$h(\theta) = \tan(\theta^2 \sin \theta)$$

(i)
$$y = \frac{\cos(\pi x)}{\sin(\pi x) + \cos(\pi x)}$$

$$(j) y = \sin \sqrt{1 + x^2}$$

(k)
$$y = \left(\frac{1 - \cos(2x)}{1 + \cos(2x)}\right)^4$$

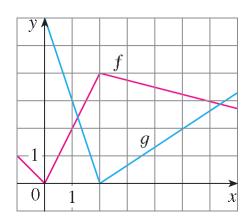
(1)
$$y = \sin(\sin(\sin x))$$

- (2) Find y' and y'' for $y = \cos(\sin 3\theta)$.
- (3) Find an equation of the tangent line to the curve $y = \sin(\sin x)$ at the point $(\pi, 0)$.
- (4) The curve $y = |x|\sqrt{2-x^2}$ is called a bullet-nose curve. Find an equation of the tangent line to the curve at the point (1,1).
- (5) Find all the points on the graph of the function

$$f(x) = 2\sin x + \sin^2 x$$

at which the tangent line is horizontal.

(6) A table of values for f, g, f', and g' is given:


x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

- (a) If h(x) = f(g(x)), find h'(1).
- (b) If H(x) = g(f(x)), find H'(1).

(7) If f and g are the functions whose graphs are shown, let

$$u(x) = f(g(x)), v(x) = g(f(x)), \text{ and } w(x) = g(g(x)).$$

Find each derivative, if it exists. If it does not exist, explain why. (a)u'(1) (b) v'(1) (c) w'(1)

