Worksheet 11 - Section 2.6

(1) (a) Find y^{\prime} by implicit differentiation.
(b) Solve the equation explicitly for y and differentiate to get y^{\prime} in terms of x.
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$
\frac{1}{x}+\frac{1}{y}=1
$$

(2) Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $y^{5}+x^{2} y^{3}=1+x^{4} y$
(b) $y \cos x=x^{2}+y^{2}$
(c) $4 \cos x \sin y=1$
(d) $\sqrt{x+y}=1+x^{2} y^{2}$
(e) $\cos (x+y)=\sin (x y)$
(f) $\tan \left(\frac{x}{y}\right)=x+y$
(g) $\frac{x^{2}}{x+y}=y^{2}+1$
(h) $x y=\sqrt{x^{2}+y^{2}}$
(3) If $f(x)+x^{2}[f(x)]^{3}=10$ and $f(1)=2$, , find $f^{\prime}(1)$.
(4) Regard y as the independent variable and x as the dependent variable and use implicit differentiation to find $\frac{d y}{d x}$.

$$
x^{4} y^{2}-x^{3} y+2 x y^{3}=0
$$

(5) Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
(a) $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$ at $\left(0, \frac{1}{2}\right)$.
(b) $y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right)$ at $(0,-2)$.
(6) Find $y^{\prime \prime}$ by implicit differentiation.
(a) $\sqrt{x}+\sqrt{y}=1$
(b) $\sin y+\cos x=1$
(7) If $x y+y^{3}=1$, find the value of $y^{\prime \prime}$ at the point where $x=0$.

