Worksheet 11 - Section 2.6

- (1) (a) Find y' by implicit differentiation.
 - (b) Solve the equation explicitly for y and differentiate to get y' in terms of x.
 - (c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$\frac{1}{x} + \frac{1}{y} = 1$$

- (2) Find $\frac{dy}{dx}$ by implicit differentiation.
 - (a) $y^5 + x^2y^3 = 1 + x^4y$ (b) $y \cos x = x^2 + y^2$ (c) $4\cos x \sin y = 1$ (d) $\sqrt{x+y} = 1 + x^2y^2$ (e) $\cos(x+y) = \sin(xy)$ (f) $\tan(\frac{x}{y}) = x+y$ (g) $\frac{x^2}{x+y} = y^2 + 1$ (h) $xy = \sqrt{x^2 + y^2}$
- (3) If $f(x) + x^2 [f(x)]^3 = 10$ and f(1) = 2, find f'(1).
- (4) Regard y as the independent variable and x as the dependent variable and use implicit differentiation to find $\frac{dy}{dx}$.

$$x^4y^2 - x^3y + 2xy^3 = 0$$

(5) Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

(a)
$$x^2 + y^2 = (2x^2 + 2y^2 - x)^2$$
 at $(0, \frac{1}{2})$.
(b) $y^2(y^2 - 4) = x^2(x^2 - 5)$ at $(0, -2)$.

- (6) Find y'' by implicit differentiation.
 - (a) $\sqrt{x} + \sqrt{y} = 1$
 - (b) $\sin y + \cos x = 1$
- (7) If $xy + y^3 = 1$, find the value of y'' at the point where x = 0.