Worksheet 5-Section 1.8

(1) Sketch the graph of a function that is continuous except for the stated discontinuity.
(a) Removable discontinuity at 3 and jump discontinuity at 5 .
(b) Discontinuous, but cntinuous from the right at 2 .
(2) Use the definition of continuity and the properties of limits to show that the function is continuous on the given interval.

$$
f(x)=\frac{2 x+3}{x-2}, \quad(2, \infty)
$$

(3) Explain why the function is discontinuous at the given number a. Sketch the graph of the function.

$$
\begin{aligned}
& \text { (a) } f(x)=\frac{1}{x+2}, \quad a=-2 \\
& \text { (b) } f(x)= \begin{cases}1-x^{2}, & \text { if } x<1 \\
\frac{1}{x}, & \text { if } x \geq 1\end{cases} \\
& \text { (c) } f(x)= \begin{cases}\cos x, & \text { if } x<0 \\
0, & \text { if } x=0 \\
1-x^{2}, & \text { if } x>0\end{cases}
\end{aligned}
$$

(4) How would you "remove the discontinuity" of f ? In other words, how would you define $f(2)$ in order to make f continuous at 2 ?

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

(5) Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, left, or neither? Sketch the graph of f.

$$
f(x)= \begin{cases}x+1, & x \leq 1 \\ \frac{1}{x}, & 1<x<3 \\ \sqrt{x-3}, & x \geq 3\end{cases}
$$

(6) Use continuity to evaluate the limit.
(a) $\lim _{x \rightarrow 4} \frac{5+\sqrt{x}}{\sqrt{5+x}}$
(b) $\lim _{x \rightarrow 2}\left(x^{3}-3 x+1\right)^{-3}$

