## Worksheet 6 - Section 2.1

(1) Find an equation of the tangent line to the curve at the given point.

$$
\begin{equation*}
y=\sqrt{x} \tag{1,1}
\end{equation*}
$$

(2) For the function $g$ whose graph is given, arrange the following numbers in increasing order and explain your reasoning:

(3) If an equation of the tangent line to the curve $y=f(x)$ at the point where $a=2$ is $y=4 x-5$, find $f(2)$ and $f^{\prime}(2)$.
(4) Sketch the graph of a function $f$ for which $f(0)=0, f^{\prime}(0)=3, f^{\prime}(1)=0$, and $f^{\prime}(2)=-1$.
(5) Sketch the graph of a function $g$ that is continuous on its domain $(-5,5)$ and where $g(0)=1, g^{\prime}(-2)=0, \lim _{x \rightarrow-5^{+}} g(x)=\infty$ and $\lim _{x \rightarrow 5^{-}} g(x)=\infty$.
(6) Find $f^{\prime}(a)$.
(a) $f(t)=\frac{2 t+1}{t+3}$
(b) $f(x)=\sqrt{1-2 x}$
(7) Each limit represents the derivative of some function $f$ at some number $a$. State $f$ and $a$ in each case.
(a) $\lim _{h \rightarrow 0} \frac{(1+h)^{10}-1}{h}$
(b) $\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5}$
(c) $\lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}$
(d) $\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$
(8) Determine whether $f^{\prime}(0)$ exists.

$$
f(x)=\left\{\begin{array}{l}
x \sin \frac{1}{x} \text { if } x \neq 0 \\
0 \\
\text { if } x=0
\end{array}\right.
$$

