Worksheet 8 - Section 2.3

(1) Differentiate the function.
(a) $f(x)=2^{40}$
(b) $g(t)=2 t^{-\frac{3}{4}}$
(c) $y=x^{2}(1-2 x)$
(d) $y=\sqrt{x}(x-1)$
(e) $S(R)=4 \pi R^{2}$
(f) $y=\frac{x^{2}+4 x+3}{\sqrt{x}}$
(g) $H(x)=\left(x+x^{-1}\right)^{3}$
(h) $G(q)=\left(\frac{1}{t}-\frac{1}{\sqrt{t}}\right)^{2}$
(i) $F(y)=\left(\frac{1}{y^{2}}-\frac{3}{y^{4}}\right)\left(y+5 y^{3}\right)$
(j) $y=\frac{t^{3}+3 t}{t^{2}-4 t+3}$
(k) $g(x)=\frac{1+2 x}{3-4 x}$
(l) $g(t)=\frac{t-\sqrt{t}}{t^{\frac{1}{3}}}$
(2) Find the derivative of $f(x)=\left(1+2 x^{2}\right)\left(x-x^{2}\right)$ in two ways: by using the Product Rule and by performing the multiplication first. Do your answers agree?
(3) Find equations of the tangent line and normal line to the curve

$$
y=\frac{3 x+1}{x^{2}+1}
$$

at the point $(1,2)$.
(4) Find the first and second derivatives of the function

$$
f(x)=\frac{x^{2}}{1+2 x}
$$

(5) The equation of motion of a particle is $s=t^{3}-3 t$, where s is in meters and t is in seconds. Find
(a) the velocity and acceleration as a function of t,
(b) the acceleration after 2 s , and
(c) the acceleration when the velocity is 0 .
(6) Suppose that $f(5)=1, f^{\prime}(5)=6, g(5)=-3$ and $g^{\prime}(5)=2$.

Find the following values:
(a) $(f g)^{\prime}(5)$,
(b) $\left(\frac{f}{g}\right)^{\prime}(5)$
(c) $\left(\frac{g}{f}\right)^{\prime}(5)$
(7) If $f(x)=\sqrt{x} g(x)$ where $g(4)=8$ and $g^{\prime}(4)=7$, find $f^{\prime}(4)$.
(8) If g is a differentiable function, find an expression for the derivative of each of the following functions:
(a) $y=x g(x)$
(b) $y=\frac{x}{g(x)}$
(c) $y=\frac{g(x)}{x}$
(9) Show that the curve $y=6 x^{3}+5 x-3$ has no tangent line with slope 4 .
(10) Find an equation of the normal line to the curve $y=\sqrt{x}$ that is parallel to the line $2 x+y=1$.
(11) If f and g are functions whose graphs are shown, let

$$
u(x)=f(x) g(x) \text { and } v(x)=\frac{f(x)}{g(x)} .
$$

(a) Find $u^{\prime}(1)$.
(b) Find $v^{\prime}(5)$

(12) Where does the normal line to the parabola $y=x^{2}-1$ at the point $(-1,0)$ intersect the parabola a second time? Illustrate with a sketch.
(13) Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ x+1 & \text { if } x \geq 1\end{cases}
$$

Is f differentiable at 1? Sketch the graphs of f and f^{\prime}.
(14) Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 2 \\ m x+b & \text { if } x>2\end{cases}
$$

Find the vaues of m and b that make f differentiable everywhere.

