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1 Learning objectives

1. We can understand the symbolic powers of (positive characteristic) rings by closely studying
the maps R1{pe Ñ R.

2. For certain rings (e.g. Toric varieties, Hibi rings) the study of these maps boils down to (hard!)
combinatorics

2 Symbolic and ordinary powers of ideals

We assume, for simplicity:

Global assumptions: R is a normal domain finitely generated over a perfect field k.

Though everything works even if k is not perfect and R is just reduced.

3. Definition: if p P SpecR, we define ppnq :“

4. Remark: these are larger than ordinary powers, i.e. ppnq Ě pn. Rarely an equality.

5. Exercise: let R “ krx, y, zs{pxy ´ z5q and p “ px, zq. Then pp5q “ Ľ p5.

6. Exercise: Let m Ď R be a maximal ideal. Then mpnq “ mn for all n.

7. Intuition: ppnq is the set of regular functions on SpecR that
(cf. Zariski-Nagata theorem).

Main question: How does ppnq relate to pn? More precisely, for which a, b P N do we have
?

8. In 2000, Ein, Lazarsfeld, and Smith gave a striking answer to this question:

Theorem 1 ([ELS01]). Let R be a regular ring over an algebraically closed field of character-
istic 0. Then pphnq Ď pn for all prime ideals p of height h.

9. We will talk about weakening the regularity assumption in this theorem.

10. Remark: in particular, if dimR “ d, we see that ppdnq Ď pn for all p and all n. Because this
number d depends only on the ring R (and not on the primes p) we say these rings have the
Uniform Symbolic Topology Property, or USTP for short.
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3 Commutative algebra mod p

11. To prove something like Theorem 1, it actually suffices to work with rings of positive charac-
teristic, using standard “reduction mod p” techniques. For instance, to show that

R “
Crx, y, zs

px3 ´ 5y2 ` 7z3q

has USTP it suffices to show that its reductions mod p,

Rp “

have USTP for all p " 0. In general, there’s a rich theory saying that many properties of a
ring in characteristic 0 can be checked mod p sufficiently large. See [HH99, Chapter 2] for
details.

12. Exercise: How would one define the reduction of a ring such as

S “
Crx, y, zs

`?
2x3 ´ πy2 ` i

7
z3
˘

modulo p?

13. Now let R have characteristic p ą 0. Consider the R-module, R1{p defined by R1{p :“

Key idea: We can learn a lot about R by studying the R-module structure of R1{pe for e ą 0

Note that R1{pe is always a finitely generated module in our setting.

14. For instance, a theorem of Kunz says that R is regular if and only if R1{pe is a flat R-module
for some (all) e ą 0 [Kun69].

15. Example from number theory: these modules can be used to detect whether an elliptic curve
in positive characteristic is “ordinary” or “supersingular” [BS15].

16. Recall: our goal is to weaken the regularity hypothesis in Theorem 1. The crux of Ein–
Lazarsfeld–Smith’s proof1 is the following chain of containments:

pphnq Ď
ÿ

eą0

ÿ

ϕ:R1{peÑR

ϕ
`

ppphnqq1{p
e˘

Ď
ÿ

eą0

ÿ

ϕ:R1{peÑR

ϕ
´

`

pphnq
˘tpe{nu{pe

¯n

Ď pn

The second containment breaks if R is not regular! So we make the sum on the left a little
smaller:

Theorem 2 ([Smo18]). Let R be a normal domain finitely generated over a perfect field k of
characteristic p. Then, for all ideals a of R, we have2

ÿ

eą0

ÿ

ϕPD
pnq
e pRq

ϕ
`

a1{p
e˘

Ď
ÿ

eą0

ÿ

ϕ : R1{peÑR

ϕ
`

atpe{nu{pe
˘n
,

1At least, the positive-characteristic analog of their proof. The original proof uses multiplier ideals which are,
fascinatingly, a close analog of these test ideals that works in characteristic 0. Constructing multiplier ideals requires
resolution of singularities, which is not known in positive characteristic.

2For the experts: I’m sacrificing precision for clarity by omitting test elements in the sums below.
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where D pnq
e pRq Ď HomRpR

1{pe , Rq is the set of maps admitting a lifting to the n-fold tensor
product:

pRbknq
1{pe Rbkn

R1{pe R
ϕ

17. I won’t explain how this works in this talk, but here’s the key take-away I want you to have
from this discussion:

Key idea: This set of maps D pnq
e pRq is a correction term that accounts for our ring R not being

regular. If the correction term is not too bad, then the conclusion of Theorem 1 still holds. [CS18,
Theorem 4.1]

18. Definition: If D pnq
e pRq is big enough for the argument to work (for some e), then R is called n-

Diagonally F -Regular (n-DFR). If this is true for all n ą 0, we say R is Diagonally F -Regular
(DFR).

19. Aside for experts: Concretely, we need the test ideal of D pnqpRq to be all of R, i.e.
ÿ

e

ÿ

ϕPD
pnq
e

ϕ
`

c1{p
e˘

“ R

where c P R is some element such that Rc is regular.

20. So if R is n-DFR, then for all p of height h.

The question becomes: Which rings are DFR?

21. Facts about Diagonal F -regularity: regular rings are DFR (exercise! Follows from Kunz’s
theorem), Segre products of polynomial rings are DFR [CS18] (“non-effective” USTP was
known prior to this), tensor products of DFR k-algebras are DFR [CS18] (new rings with
USTP!). DFR rings are strongly F -regular. DFR rings are not always Gorenstein and can
have arbitrarily small F -signature.

22. Exercise (hard): if p is a height 1 prime and torsion element of the divisor class group, then
ppnq ‰ pn for n " 0. So DFR rings have torsion free divisor class groups [CS18].

4 Diagonal F -regularity of Hibi rings

23. A Hibi ring is a kind of (toric) ring associated to a finite partially ordered set.

24. Definition Let P “ tv1, . . . , vnu be a poset. The associated Hibi ring, krP s Ď krx0, . . . , xns
is defined as follows: we let P “ P Y tv0u where v0 ď vi for all i. Then:

krP s :“ k
”

xa00 ¨ ¨ ¨ x
an
n

ˇ

ˇ

ˇ

ı

25. If you know about poset ideals, then we can also write

krP s “
k
“

xI
ˇ

ˇ I Ď P a poset ideal
‰

xIxJ ´ xIYJxIXJ
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26. We usually denote posets by Hasse diagrams : nodes represent elements of P . Bigger elements
are written above smaller elements. Draw an edge between two distinct nodes vi and vj if
there’s no node between them, i.e. if vi ď vk ď vj implies vk “ vi or vk “ vj. In this case, we
say vj covers vi.

27. Some examples/exercises:

P “
v0

v1

v2 krP s “?

Q “
v0

v1 v2 krQs “?

28. Checking whether a Hibi ring is n-DFR boils down to solving a complicated combinatorial
problem:

Theorem 3 ([PST18]). For each i, let ri be the length of the longest chain going up from vi
in P . Then krP s is n-DFR if and only if there exists some e such that the following holds:
for 0 ď i ď d and 1 ď m ď n, let αi,m be integers in r0, pe´ 1s such that

řn
m“1 αj,m ” rj (mod

pe) for all j. Set Nj “ t
řn
m“1

αj,m

pe
u. For all i, j, and m, let εj,i,m “ 1 if αj,m ą αi,m and let

εj,i,m “ 0 otherwise. Then there exist δi,m P Z with

(a) δi,m ě 0 for all m whenever vi is maximal in P ,

(b) δj,m ď εj,i,m ` δi,m for all m whenever vj covers vi, and

(c)
řn
m“1 δj,m “ Nj

29. Aside for experts: The point is that solving this combinatorial problem is the same as
constructing a lifting pRbnq1{p

e
Ñ Rbn of a map R1{pe Ñ R that sends z “ xr00 ¨ ¨ ¨ x

rn
n to 1.

Note that z P R and Rz is regular.

30. Using this combinatorial description, we were able to show:

Theorem 4 ([PST18]). If krP s is DFR, so is krP Y tv1us, where v1 covers a single element
of P .
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31. Example: Checking if F5rx, y, zs is 3-DFR:

αi,m

0

4

4

2

2

4

1

1

3

Ni δi,m

32. Recall: polynomial rings are DFR. Using theorem 4, which posets (Hasse diagrams) do we
know to correspond to DFR Hibi rings?

33. Recall: tensor products of DFR rings are DFR. Here’s what the tensor product of two Hibi
rings looks like:

34. Exercise: Convince yourself you get isomorphic rings doing the tensor product in either
order!

35. Exercise: What are all the Hibi rings known to be DFR, using Theorem 4 and results about
DFR rings in item 20?

36. Definition: A top node in a poset is a node that covers more than one element. They look
like hats in the Hasse diagram.

Theorem 5 ([PST18]). The Hibi ring krP s is DFR whenever the set of top nodes of P is

37. The converse to this theorem is not known! Here’s the first poset with incomparable top
nodes:

38. We know it’s 2-DFR (in fact, all Hibi rings are 2-DFR). Dylan Johnson has shown it’s 3-DFR.
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5 Questions I would like to know the answer to

39. Is the diagonal F -regularity of a toric ring independent of characteristic?

40. Is D pnqpRq a good metric for the singularities of R? For instance, if D p2q
e pRq “ HomRpR

1{pe , Rq
for all e, does that imply R is regular? This is true for toric Q-Gorenstein R.

41. Do we always have D pnq
e pRq Ě D pn`1q

e pRq? This is true for toric R.

42. Are rings with large F -signature (say, ą 1{2) always DFR? Note that such rings have torsion-
free divisor class groups by Carvajal-Rojas.

43. What kind of USTP statements can we get if the F -signature of D pnq is large but ă 1?
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