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1. INTRODUCTION

The most basic objects in any category are free objects, yet they are
often not the easiest ones to understand. For the category of groups, they
are abundant: in any finitely generated group of matrices, for example, there
is a free non-abelian subgroup unless the group has a finite index solvable
subgroup. (Tits alternative [Tit72]). Particularly important groups related
to the free group F, on n letters are its group of automorphisms Aut(F,)
and its quotient by inner automorphisms, the outer automorphism group
Out(F,,). Automorphism groups are groups of bases of F),, and the works
of Dehn and Nielsen on these groups showed the fundamental role of free
groups in the study of all other groups. Studying these groups via complexes
they act on not only lets us understand the geometry of these groups but
incorporates topology into the realm of geometric group theory.

My current research topic is understanding the geometry of Out(F,) by
studying its subgroups and in particular, their growth rates. I am specifically
interested in answering the question of whether or not subgroups of Out(F;,)
which have exponential growth rate have a uniform exponential growth rate
and classifying the ones which do. For this, I am using an approach which
incorporates techniques from 3-dimensional topology into geometric group
theory by taking the 3-dimensional manifold f,(S? x S') as a model space
for Out(F,).

The study of the structure and dynamics of Out(F,,) gains both motivat-
ing ideas and mathematical interest because of its close connections with
other important topological and algebraic objects. One such is the homo-
morphism MCG(S) — Out(F),), where S is a surface with one boundary
component, sending a mapping class to its induced automorphism on the
fundamental group. Another is the homomorphism Out(F,) — GLy(Z),
sending an automorphism to its induced automorphism on the abelianiza-
tion of Fj,. Many results have been proven to determine the extent to which
well-known properties of MCG(S) and GL,(Z) pass to Out(F,) via these
homomorphisms.

In our work, we use another connection with mapping class groups, the
homomorphism MCG(M) — Out(F,) where M = #,(S? x S'). It is
very close to being an isomorphism, as its kernel is a finite elementary
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abelian 2-group (generated by “rotation” homeomorphisms in neighbor-
hoods of finitely many disjoint 2-spheres). It enables us to utilize a consid-
erable body of three-dimensional techniques developed over many decades.

2. BACKGROUND

Given a generating set of a finitely generated group, the growth rate of
a group tells us the number of elements that can be written as a product
of a given number of elements from the generating set, and much about the
geometry and dynamics of a group and its elements can be learned from the
growth rate. The exponential growth rate w(G, S) of such a group G with
a generating set S is given by:

w(G,S) = li_>m V/|Bs(n)],

Bs(n) ={g € G:ls(g) <n}.
Here, the length 5(g) is the least integer k so that the g can be expressed
as a product of k elements from S.

If w(G,S) > 1 then G said to have exponential growth. In particular,
in a free semi group generated by two elements, the number of elements
of length n is the same as the number of ways to form an n-letter word
using the generating set. As a result, any finitely generated group which
contains a free semi group on two generators has exponential growth. It is
possible to take the infimum over all generating sets in the above formula,
which is denoted by w(G). Now, if w(G) > 1, G is said to have uniform
exponential growth. Finitely generated subgroups of the general linear group
have this property, which in that setting is equivalent to being not virtually
nilpotent [EMO02].

It is also known that homotopy classes of homeomorphisms of surfaces
(mapping class groups) and analogous groups of automorphisms of free
groups have uniform exponential growth [AAS07]. In the mapping class
group setting, the question of whether finitely generated subgroups of map-
ping class groups have uniform exponential growth rate was answered posi-
tively by Mangahas in [ManI0]. The main theorem of Mangahas in [Man10)]
states that the subgroups which are not abelian have uniform exponential
growth and minimal growth rate is bounded below by a constant depend-
ing only on the surface. The Tits Alternative for the mapping class groups
proven by Ivanov in [Iva92] combined with the result of Birman, Lubotzky
and McCarthy in [BLMS&3| saying that any solvable subgroup of mapping
class group is virtually abelian gives an idea of where to look for free groups
inside all finitely generated subgroups of mapping class groups. Mangahas
uses the classification of subgroups of mapping class groups due to Ivanov
[Iva92] along with concepts and techniques such as subsurface projection in
the curve complex [MMOQ], minimal translation of pseudo Anosovs [MM99]
and results of Fujiwara [Fuj0§|, and Hamidi-Tehrani [HT02] (completing her
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arguments in the details when finding a uniform number for the exponential
growth of free subgroups of rank 2). Unfortunately, some of these crucial
concepts are not fully developed in the Out(F),) setting, and some others
are far more complicated, so further techniques need to be developed and
more cases need to be investigated.

Since Out(F},) satisfies the Tits Alternative [BFH00] and virtually nilpo-
tent groups have polynomial growth, it will be sufficient to look for the free
groups of rank 2 in non virtually abelian subgroups. For this, we will first
look for fully irreducible elements of Out(F),) since they are the most nat-
ural analogs of pseudo Anosov self-homeomorphisms of a surface with one
boundary component and pseudo Anosovs have a fundamental role in main
lemma of Mangahas in [Manl0]. Just like pseudo Anosov elements, fully
irreducibles are defined to be the class of automorphisms no power of which
fixes a conjugacy class of free factors of F,,. Just as pseudo Anosovs are
crucial in the study of mapping class groups, so are fully irreducibles in the
study of geometry and dynamics of Out(F},) and spaces on which it acts (in
[LLO3|, [CP10], BBCI10] etc.) The analogy with the pseudo Anosovs gives
us a reason for investigating the applicability of the methods and algorithms
used to construct pseudo Anosovs to fully irreducible elements. One of the
most known methods for creating pseudo Anosov diffeomorphisms is given
by Thurston in [Thu88], as a part of the process of classification of elements
of mapping class groups.

Thurston in [Thu88| says that, in a group generated by two Dehn twists
about two filling curves on a closed surface with genus g > 2, the groups
generated by twists with powers greater than a finite number N is free
of rank 2 and the elements from these groups which are not conjugate to
powers of Dehn twists themselves are pseudo Anosov. Adapting this theorem
to Out(F,) to generate fully irreducible elements and to find rank 2 free
groups, Clay and Pettet in [CP10] used an algebraic definition of a Dehn
twist automorphism relative to a Z—splitting of the free group and obtained
a number N for the minimum power of twists, yet this number N depended
on the choice of the twists.

To find a number N which is independent of the choice of Dehn twists,
it was necessary to leave the 1-dimensional model for Out(F,) since the
dependence was due to the necessity for picking a basis of F}, in the proof.
Instead we look at the tori in another model for Out(F},), #,(S? x S1),
which we are calling M. For this, I first defined a concept of being normal for
essential imbedded tori in M and proved the existence of such representative
in a given homotopy class [Giil12]. Then, Clay, Rafi and I in [MCR] defined
Dehn twists about such tori in universal cover M and obtained a bound
for intersection number after twisting. We then applied a certain ping-pong
argument on the sets of sphere systems of the manifold M. After that, a
uniform value for N was achieved.

The manifold M provides a topological rendering for important alge-
braic constructs. First, there is a direct correspondence between (essential)
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spheres in M and free splittings of the fundamental group F;,. This was
developed by Hatcher in [Hat95], and used in [HV04] to give the conditions
on which Aut(F,,) has certain homological stability. Second, the tori in M
correspond to equivalence classes of Z-splittings of F},. Note here that all
tori in M are compressible, since F}, contains no free abelian subgroups of
rank 2, but we use tori that are essential in the sense that the image of the
fundamental group of the torus in F}, is infinite cyclic.

The tori also provide a topological version (indeed, a motivating one) of
Dehn twist automorphisms of F,, (JRS97]). Dehn twists about tori have long
been studied in three-dimensional topology as analogues of Dehn twists of
2-dimensional surfaces.

To work with tori, however, various technical challenges must be sur-
mounted. Of fundamental importance is the need to find a “normal” torus
in each homotopy class, and to understand the uniqueness of normal tori.
This is somewhat analogous to the geodesic in each homotopy class of cir-
cle in a hyperbolic 2-manifold; geodesics and normal tori both minimize
intersections with spheres of complementary codimension.

3. SPHERE SYSTEMS AND NORMAL TORI

The 3-dimensional space on which Out(F,) acts is M = #,(S? x S!).
The relation between M and Out(F),) is that the latter is isomorphic to
the mapping class group of M up to twists about 2-spheres in M. M can
be described as follows: we remove the interiors of 2n disjoint 3-balls from
53 and identify the resulting 2-sphere boundary components in pairs by
orientation-reversing diffeomorphisms, creating S? x S! summands.

Associated to M is a rich algebraic structure coming from the essential 2-
spheres that M contains. A sphere system is a collection of isotopy classes of
disjoint and non-trivial 2-spheres in M no two of which are isotopic. There is
a simplicial complex associated to M called the sphere complex and denoted
by S(M), having isotopy classes of non-trivial 2-spheres in M as vertices and
sphere systems of k + 1 spheres as k-dimensional simplices.

The sphere complex is simply connected [HM90], and has a subspace
which is homeomorphic to Outer Space. This is the subspace of the sphere
complex which consists of sphere systems such that all complementary com-
ponents are simply connected. The outer space, which is known also as
Culler Vogtmann Space, is the one dimensional model for Out(F,). For a
survey on Outer Space we refer to [Vog02]. For the details we refer to [Hat95]
and [HV04]. Tt should also be noted that the sphere complex is the same
as the free splitting complex hyperbolicity of which was proven recently by
Mosher and Handel [HM12] and which is very closely related to the complex
of free factors defined first by Hatcher and Vogtmann in [HV9S].

A first translation to our new 3-dimensional language is via essential
spheres in M: we define 3-dimensional versions of maximal curve systems
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and of pants decompositions for M as follows: We call a collection ¥ of dis-
jointly imbedded essential, non-isotopic 2-spheres in M a mazximal sphere
system if every complementary component of ¥ in M is a 3-punctured 3-
sphere. Here, the equivalent concept to a pair of pants in a surface is a
3-punctured 3-sphere.

Next, to be able to define a concept of Dehn twist, we need to use the
correspondence between the equivalence classes of Z—splittings of F),, and
homotopy classes of essential tori in M. Since we need bounds on the inter-
section number after Dehn twisting, we are particularly interested in finding
a representative from a homotopy class of torus which intersects the spheres
of a maximal sphere system minimally. In other words, we need to define
a notion of a normal form and prove that normal representatives exist in a
given homotopy class, fairly uniquely. This is achieved in my paper [Giil12]
in following steps:

Definition 3.1. Given an imbedded torus and a mazximal sphere system %
in M, we say that the torus is in normal form with respect to X if each
intersection of the torus with each complementary 3-punctured 3-sphere is a
disk, a cylinder or a pants piece.

The first step is finding a representative, hence an existence condition:

Theorem 3.2 (Giiltepe). Every imbedded essential torus in M is homo-
topic to a normal torus and the homotopy process does not increase the
intersection number with any sphere of a given maximal sphere system .

Our uniqueness condition is defined as follows: two tori are said to be
normally homotopic if there is a homotopy of M changing one of the tori to
the other one without introducing new intersections on the sphere crossings,
hence through normal, but possibly immersed tori at each level.

Secondly, I proved the following theorem, which is analogous to [Hat95,
Proposition 1.2] of Hatcher and which is a type of uniqueness condition for
finding a normal representative in a homotopy class of tori in M:

Theorem 3.3 (Giiltepe). If a and 5 are two homotopic tori in M, both in
normal form, then they are normally homotopic.

Using these two theorems, it was deduced:

Corollary 3.4 (Giiltepe). If a torus a is in normal form with respect to a
maximal sphere system %, then the intersection number of a with any S in
> is minimal among the representatives of the homotopy class a.

4. GENERATING FULLY IRREDUCIBLES VIA INTERSECTING TORI

We consider two intersecting tori in M and from now on always use normal
representatives whenever a maximal sphere system has been chosen. An
example of such an intersecting pair is illustrated in Figure

We know that each homotopy class of tori in M gives an equivalence
class of a Z-splitting of F;,. The dual tree in M corresponding to such a
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FIGURE 1. Two thrice-intersecting tori a(in black) and § (in
red) in #3(S% x S1). B intersects o twice nontrivially and once
trivially whereas « intersects 8 once nontrivially and twice
trivially.

splitting is called Bass-Serre tree and hence we will have a Bass-Serre tree
corresponding to each homotopy class of tori. Given an essential imbedded
torus « in M, the image of 7 (a)) under the homomorphism induced by the
inclusion i: « — M is an infinite cyclic subgroup of w1 (M), defined up to
conjugacy. These are Z-subgroups of 71 (M). Two Z-splittings correspond
to two tori and the Z—subgroups of 71 (M) corresponding to these tori act on
the Bass Serre trees of each other as elliptic or hyperbolic automorphisms.
This action is by multiplication from the right. Recall also that given two
elementary Z-splittings A; xc By (or Aix¢) and Ag*c, B (or Aa*c,) where
Cy1 = (¢1) and Cy = (c2), the element ¢y is said to be elliptic in the Bass-
Serre tree of the first splitting if it is contained in a conjugate of A; or B
and called hyperbolic otherwise. These definitions also match with the way
these automorphisms act on Bass-Serre trees:

Definition 4.1. Let Ay %o By (or Aixq) and Az xg By (or Axxg) be two
Z—splittings of Fy, corresponding to tori o and 3. The translation length of
« in the Bass-Serre tree T of the splitting corresponding to 3 is defined as

min {d(a(z),z) : x € T}.
We will denote this length by £g(c).

It is clear that fg(cr) > 0 when « is hyperbolic in T and zero if it is
elliptic.
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Depending on the action of the generator of the Z subgroups of 71 (M)
corresponding to each torus, we have three types of splittings: hyperbolic-
hyperbolic, hyperbolic elliptic and elliptic-elliptic.

Definition 4.2. Suppose o and [ are essential embedded tori in M. A
bigon is an imbedding ¢: D* — M such that 0D? = I, U Iy where ¢(I1) C a
and ¢(Iy) C B for connected intervals Iy and Iy but $(0D?) does not bound
a disk in o U . Similarly, a cap is an embedding ¢: B> — M such that
0B3 = Dy U Dy where ¢(D1) C a and ¢(D2) C 8 for 2-disks D1 and Ds.

Let the number of intersection components of a and 8 which are non-
trivial in 8 be denoted by L ().

Proposition 4.3 (Giiltepe). Let a and 3 be two imbedded tori and assume
that there are no bigons between o and 3. Then,

la(B) = La(B)

where £, (B) is the translation length of the generator of B in Bass-Serre tree
T, of a.

To prove this proposition, one needs to prove this following Lemma:

Lemma 4.4 (Giiltepe). Each bigon can be eliminated by a local homotopy
reducing the number of intersection components locally. Similarly, caps can
be eliminated by a homotopy.

The main theorem we prove in [MCR] is:

Theorem 4.5 (Clay, Giiltepe, Rafi). Given a pair of hyperbolic-hyperbolic
Z—splittings « and (B, and integers k,l > 5, the group (Dg,Dé) is a free
group of rank 2.

From now on a bold letter will mean a homotopy class. To prove the
theorem, we need the following intersection bound which was inspired by
the work of Hamidi-Tehrani in [HT02]:

Theorem 4.6 (Clay, Giiltepe, Rafi). For any pair of essential tori o and
B3, we have

i(%, Da(B)) = (n = 3) fp(a) i, ) —i(B, %)

In the theorem, ¥ is a fixed maximal sphere system and i(a,X) is the
number of intersection components of a with spheres of ¥. This intersection
number is calculated using the decorated tree associated to o in M, which
is given again in [Giil12].

The main concept used in Theorem is D2 (8), which is the image of
B under the n-th power of the twist about .
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FIGURE 2. A schematic picture of the image of the red torus

under a twist of the black torus in M (the upper tube comes
from a different lift).

5. SKETCH OF THE PROOF OF THE MAIN RESULTS

For our purposes, we will describe a Dehn twist D (3) in the universal
cover M. First we take two normal representatives o and 8 from o and 3,
respectively.

For each trivial intersection of 8 with « in M, the intersection circle
bounds a disk in 3. To describe the image of such intersection disk under a
twist about o, we use surgery in M. If this intersection circle is nontrivial
in «, we take a lift of the intersection disk in M in a lift & of «, cut it off
and glue another disk to its boundary which follows . An example for a lift
of this type of intersection is the first intersection given in Figure @vwhere
the black torus is a lift of & and the red one is a lift of 5. Images in M after
twisting once are given in Figure [4]

For each trivial intersection circle of 5 which is also trivial in «, we will
follow a similar procedure, given again by a surgery in M. We first fix
lifts @ and 5 of a and B, respectively. A twist about « will lift to a twist
about the chosen lift of a. To follow the image of the lift of intersection
disk under a twist about a, we first take an arc in M connecting the lift of
the intersection disk to another representative of itself located in the next
fundamental domain of a. Then take two copies of the intersection circle
in B, cut B along these. We cap off the one whose image in M bounds a
disk in 8 with another disk, and attach to the second one an annulus which
follows the arc and is glued to the capped off part of the next representative
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FIGURE 3. Lifts of two intersecting tori, shown in two copies
of the fundamental domain of a lift of a black torus in M.

~/

FIGURE 4. Image of the intersections given in Figure [3Junder
the twist about black torus once.

of the intersection circle. Observe that such annuli might intersect lifts of
some spheres when they are following the arc in fundamental domain of
a but since twist about « has a support in a neighborhood of a only, so
has a twist about a lift of a. Since such annuli occupy only a part of a
neighborhood of &, they may not cross all sphere intersections & makes. An
example for such a (trivial-trivial) intersection circle is given in Figure
Another example of a same type of intersection is represented by the second
intersection given in Figure [3| In this latter example, the intersection circle
is trivial in both tori and « is black and [ is red. Describing its image in a
fundamental domain under a twist about & once requires the same type of
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surgery and this image is given in Figure [4 in purple. Sphere intersections
were not depicted in these pictures.

To prove the main theorem we use a standard ping-pong argument
using the lower intersection bounds we obtained above on the following sets:

No={Z:i(a,X) < i(B,%)}
Ng={Z:i(a,%) > i(8,%)}

If, in addition, we take two filling tori, the theorem will give us fully ir-
reducible elements of Out(F),) where, a pair of tori is filling if all sphere
systems in M are intersected by at least one of them. Moreover, fully irre-
ducible elements obtained these way are hyperbolic.

6. FURTHER CASES AND NEXT STEPS TOWARDS CONTROLLING UNIFORM
GROWTH

As stated earlier, when we have two elementary Z-splittings, we have
three cases for the action of the generators of the fundamental groups of
corresponding tori on each other’s Bass-Serre trees: hyperbolic-hyperbolic,
hyperbolic-elliptic and elliptic-elliptic. Since the notion of Dehn twist has
to include all these cases, we need to prove theorem for the remaining
cases also. For this, we will need intersection bounds after twisting and
because of the nature of an elliptic action, the remaining cases tend to be
more complicated than hyperbolic-hyperbolic case.

This step will answer this question:

Question 1: Given two Dehn twist automorphisms a and b, is there a
constant po so that for n > po, the group (Dg, Dj) is a free group of rank
27

I would like to note here that a Dehn twist automorphism is only one ex-
ample of an automorphisms which is not fully irreducible. So the subgroups
which are not generated by fully irreducible automorphisms will need to be
examined further.

The remaining finite index subgroups generated by two elements will have
at least one fully irreducible generator. The fully irreducible elements can be
either toroidal or atoroidal (hyperbolic), and these types also have different
subtypes depending on the attracting and repelling trees corresponding to
such an automorphisms ([CH12]). For the subgroups generated by at least
one irreducible element, since we know by [BFH97| that they are either
virtually cyclic or contain a free group of rank 2, one might ask the following
question:

Question 2: Is the action of Out(F,,) on the sphere complex acylindrical?

The concept of acylindricity, due to Bowditch, was given first in [Bow(8]
and was applied to the action of mapping class group on the curve complex
by Fujiwara in [Fuj0§] to answer the analogous question in the mapping
class group setting, where the group was generated by one or two pseudo
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Anosov elements. Hence, answering the question above positively in our case
would lead us to finding a uniform growth on subgroups which contain an
atoroidal (hyperbolic) fully irreducible automorphism, following the steps of
Fujiwara [Fuj08].

These would be steps towards answering our main question:

Question 3: Does every finitely generated non-virtually abelian subgroup
of Out(F,,) have uniform exponential growth?
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