FOURIER COEFFICIENTS AND ALGEBRAIC CUSP FORMS ON U(2,n)

ANTON HILADO, FINN MCGLADE, AND PAN YAN

ABSTRACT. We establish a theory of scalar Fourier coefficients for a class of non-holomorphic,
automorphic forms on the unitary group U(2,n). By studying the theta lifts from holomorphic
modular forms on U(1,1), we apply this theory to obtain examples of non-holomorphic cusp forms
on U(2,n) whose Fourier coeflicients are algebraic numbers.
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1. INTRODUCTION

The Fourier coefficients of modular forms have served as a central object of study in number
theory since the 19th century. Jacobi studied the Fourier coefficients of theta series in connection to
the theory of quadratic forms [Jac69]. Later, Siegel developed the Fourier expansion of holomorphic
modular forms associated to the group of 2n-by-2n real symplectic matrices Sp(n). More recently,
a certain class of quaternionic' modular forms on the split real Lie group G has been shown to
have Fourier coefficients of arithmetic interest, see for example [GGS02; LP24; Pol23].

Let n € Z>;. The overarching goal of this paper is to study an analogous theory of Fourier
coefficients for a class of modular forms on the real unitary group U(2,n). These quaternionic
modular forms on U(2,n) may be defined using the Schmid differentials Df associated to certain
(continued) discrete series representations of U(2,n); for precise definitions of these operators, see
Section 3.1. Throughout this introduction we present our results using semi-classical notation, so
that a weight ¢ € Z>; modular form ¢ is, in particular, a function on U(2,n) such that ngp = 0.

Our first main theorem (Theorem 1.1) is a multiplicity-at-most-one result for the generalized
Whittaker spaces of certain quaternionic discrete series representation of U(2,n). In addition to
giving a bound on the dimension of these generalized Whittaker space, Theorem 1.1 gives explicit
formulas for the generalized Whittaker functions associated to the representation of U(2,n) of min-
imal K-type V, = Sym‘V. Here V is a particular representation of a maximal compact subgroup
Ko of U(2,n). The results allows us to associate a set of scalar Fourier coefficients {a,(T)}r>0
to a quaternionic modular form ¢ on U(2,n). These coefficients a,(7") are indexed by vectors 1" in
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the homogeneous cone of a rational hermitian space V of signature (1,n — 1).

In our second main theorem (Theorem 1.4), we construct quaternionic cusps forms ¢ whose
Fourier coefficients a,(7') are algebraic numbers and not all equal to zero. The construction pro-
ceeds by theta lifting holomorphic cusp forms on U(1,1) using a specific choice of archimedean
test data. As a byproduct of our analysis, we obtain formulas for the quaternionic cusp forms on
U(2,n) which are obtained by considering theta lifts of holomorphic Poincaré series from U(1,1).

We now set up the notation necessary to state Theorem 1.1. Suppose V is a non-degenerate
Hermitian space over C of signature (2,n). Let P = M N denote the parabolic subgroup of U(2,n)
stabilizing a fixed isotropic line U C V. The Levi factor M < P is identified as M = U(1}) x C*
where Vj is a fixed n-dimensional subspace of V' which has signature (1,n — 1) and is orthogonal
to U. The unipotent radical N is non-abelian with a one-dimensional center Z = [N, N|. We have
an identification Vo — NP (see §2.3) which we denote w ~ exp(w). The maximal compact K
stabilizes an orthogonal decomposition V = V;" @V~ where V," (resp. V) is a definite subspace of
dimension 2 (resp. n). Fix a unit vector us € VoNV," and let u; € V' be a second unit vector satis-
fying (u1, uz) = 0. Then {u{ " ub™: v = —¢, ... £} defines a basis for V, = (SymM‘/;r@detafz))@l.
Here 1 denotes the trivial representation of U(V,"). Set fr: M — C by Br(h, 2) = X (ug, 2T - h)

V2
where h € U(Vp) and z € C* so that (h,z) € M = U(Vp) x C*.

Theorem 1.1 (Theorem 3.4). Fiz T € Vi non-zero. Write Cﬁ’dT(U(Zn),Vg)%:O to denote the
space of smooth functions Wr: U(2,n) — V; satisfying:
(i) Wr is of moderate growth.
(i1) If k € Koo and g € U(2,n), then Wr(gk) = Wr(g) - k.
(iii) The functions DS Wy and D, W, vanish identically on U(2,n).
() If w € Vo, u € Z, and g € U(2,n) then Wr(exp(w)ug) = e~ 2mUTw) W (g).
We have
1, if (T,T) >0,
0, if (T,T) <0.

If (T,T) > 0, then there exists a unique function Wr € C}{}%F(U(Q,n),Vg)%:o satisfying

dim ¢ (C}{}}(U(Zn),Vz)Qfo) = { (1.1)

p v uéfvuZJrv
Wr(h,z) = Y |2]*F? <W> Ku(lﬁf(h,z)l)m

—I<v<l
for all (h,z) € M =U(Vy) x C*. Here K, is the Bessel function K,(z) = [;° vtz (TN gt
As a corollary to Theorem 1.1 we obtain a refined Fourier expansion for modular forms on U(2,n).

Corollary 1.2 (Corollary 3.6). Suppose ¢ is a modular form on U(2,n) satisfying D;tgp =0 and
let on (resp. @z) denote the constant term of ¢ along N (resp. Z). Then there exists a set of
Fourier coefficients {a,(T) € C}rev, such that if g € U(2,n) then

vz(9) = en(g) + > ag(T)Wr (g)- (1.2)
TeVo—{0}: (T,T)>0
Moreover, ¢ is cuspidal if and only if (1.2) takes the form
wz(9)= D ap(T)Wr(g). (1.3)
TeVy: (T,T)>0

Our proof of Theorem 1.1 is adapted from [Pol20, Theorem 1.2.1] where the analogous multiplicity-
at-most-one statement is obtain for modular forms on the quaternionic linear groups in Dynkin types
G, Fy, Eg, By, Eg, By, and D, 1 for m > 3. It relies on an analysis of the equations Dgtgo =0
which is essentially carried out for the group SU(2,1) in [KO95, Theorem 4.5]. An analysis of the
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system ngp = 0 in the case of SU(2,2) is made in [Yam91, §5 and §6]. Theorem 1.1 is closely
related to a statement in representation theory. Suppose £ > n or 1 < L%J <n < ¥, and let 1I,
denote the U(2, n)-representations with minimal K-type V, constructed in [GW96]. The functions
Wr may occur as (generalized) Whittaker functions associated to II,. When II, is discrete series
and either (T,T) > 0 or (T,T) < 0, the formula (1.1) partially implies the type A cases of a
multiplicity-one result due to Wallach [Wal03, Theorem 16]. The reader is advised that, in the
case of type A, the class of admissible characters defined in (loc. cite, §7) coincides with the set of
characters yr: N — N, yr(exp(w)) = e~ 2mUTw) where T € Vj satisfies (T, T) > 0. Theorem
1.1 extends Wallach’s result to give a multiplicity-at-most-one statement in the cases when Il is
continued discrete series or when 7' is non-zero and isotropic.

We now transition to discussing Theorem 1.3 which gives examples of quaternionic modular forms
on U(2,n). Suppose W is a complex skew hermitian space of signature (1,1) and let U(1,1) denote
the isometry group of W. We take an isotropic basis {wy,w_} of W such that (wi,w_)w =1
where (, )y denotes the skew-hermitian form on W. Writing elements of U(1, 1) as matrices relative
to the basis {wy,w_} gives an identification U(1,1) = {zg: z € C!, g € SLy(R)}. Hence U(1,1)
acts on the upper half plane H;; = {z € C: Im(z) > 0} by fractional linear transformations.
Given an cuspidal automorphic function £ on U(1,1), the theory of the Weil representation can be
used to define certain theta liftings 6y, (&, ¢) of £ to the space of automorphic forms on U(2,n).
In more detail, the Cartesian product U(1,1) x U(2,7n) supports a special family of automorphic
forms {6y ,(¢)} known as theta series. These theta series are indexed by triples (1, ¢, x) consisting
of Hecke character y, a finite adelic Schwartz function ¢, and an additive character ¥. We refer the
reader to subsection 4.1 for details. The lifting 6, (£, ¢) is defined as the Petersson inner product
of £ and 6y, (¢). Theorem 1.3 describes the modular forms on U(2,n) which arise as theta lifts
from U(1,1).

Theorem 1.3 (Theorem 5.4). Suppose I' < U(1,1) is an arithmetic subgroup such that T\Hi 1 is

non-compact. Suppose £ > n and let §r: T\U(1,1) — C be the automorphic function associated

to a holomorphic weight 20 + 2 — n modular form f(1) = 3 0., br(t)e*™™ on Hy. Assume

Ep(zg) = 2"T2€4(g) for all g € SLy(R) and z € C.

(a) There exists a triple (1o, ¢o, x0) such that the theta lift 0(&f, do) = Oypoxo (&f,> P0) s a non-zero
weight £ cuspidal quaternionic modular form on U(2,n).

(b) The constant term 0(&s, o)z is non-zero and has Fourier expansion

0(&r, 00)z(9) = > ag(e; b0) (TIWr(9)

TeVy: (T, T)>0

where each ag(gﬁ%)(T) is a finite linear combination of the Fourier coefficients by(t).

Statement (a) of Theorem 1.3 can be deduced from the literature. For example, a duality
theorem of R. Howe [How89] together with the explicit determination of the local archimedean
theta correspondence given in [Li90] implies the existence of (1o, ¢o, x0) such that (s, ¢o) is a
quaternionic modular form. For n > 2, the non-vanishing of 6(£y, ¢o) follows by an application
of the tower property for unitary dual pairs (see for example [Wul3]), and the cuspidality can
be deduced from [Wal84, Theorem 4.3]. In this paper we give a more explicit function theoretic
approach to Theorem 1.3. For example, in Theorem 6.1 we show that (s, ¢o) is a quaternionic
modular form on U(2,n) by explicitly verifying that DEEQ(P(', t—t),d0) = 0 as P(-, u_t) ranges over
the space of weight 2¢+2—n holomorphic Poincaré series. As a byproduct of this analysis, we obtain
an explicit family of functions {B,7: U(2,n) — V,: T € V. (T,T) > 0} satisfying DEEB&T =0.
The functions By 7 furnish us with an integral representations for the functions Wz of Theorem
1.1 (see (6.6)). Our final theorem uses this integral representation of Wr, to show that the theta
lifting from U(1,1) to U(2,n) preserves algebraicity of Fourier coefficients in the following sense.
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Theorem 1.4 (Theorem 6.7). Let notation be as in Theorem 1.5. Assume L/Q is an algebraic
extension such that bp(t) € L for all t € Qso. Let L(joo)/L denote the extension obtained by
adjoining all roots of unity to L. If T € Vq satisfies (T, T) > 0 then ag(¢; ¢)(T) € L(pico).-

We end the introduction by giving a brief outline of the structure of our paper. In §2 we define
a Q-rational form of U(2,n), which is denoted G, and review several pieces of structure theory
pertaining to G. The explicit forms of the Schmid differential operators are given in §3, as is
the proof of Theorem 1.1. After recalling some generalities regarding the theory of the theta
correspondence in §4, we dedicate §5 to studying the quaternionic modular forms on G obtained
as theta lifts from U(1,1). In particular, §5 contains a conditional proof of Theorem 1.3. In §6 we
complete the proof of Theorem 1.3 and establish the algebraicity statement Theorem 1.4.
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2. PRELIMINARIES ON THE GRoOuUP G

2.1. Hermitian Spaces. Fix an imaginary quadratic extension F/Q. We regard F as a subfield
of C via a fixed embedding E — C. Write Ag to denote the adele ring of E. The adele ring of Q is
denoted by A = Ag. Let x + T be the non-trivial element of Gal(£/Q) and write trg/g(v) = r+7T
for the trace map from E to Q. Let g = ¥ = [[, <, %» denote the standard additive character of
Q\A. So for p < 00 , 1, is the additive character of Q, of conductor Z, and 1 (z) = >, Define
¢r: E\Ag — C by ¥p(x) = do(5treg(x)).

Fix n € Z>1, and let 'V be a non-degenerate hermitian space over E of signature (2,n). Write
(-,-) for the hermitian form on V with the convention that (-,-) is conjugate linear in the second
variable. The Hasse principle implies that V contains an isotropic line U. Let UY C V denote a
second isotropic line such that (U, UY) # {0}. Fix b; € U and by € UV satisfying (b1,b2) = 1 and
consider the elements in V := V ®g R given by u; = %(bl + b9) and v, = %(bl — bg). Define

Vo = (U@ UY)! so that Vy is a hermitian space of signature (1,7 — 1) and
V=UasV,sU" (2.1)
We extend {u1,v,} to a basis {uy,us,v1,...,v,} of V satisfying:
(1) Ifi,5 € {1,2} then <ui,uj> = (51]
(ii) If 4,5 € {1,...,n} then (v;,v;) = —d;; and (ug,v;) = 0.
(iii) The subspace Vj = V( ®g R is spanned by {ug,v1i,...,vp—1}.
Finally, let V" = C-span{uj,us} and V,;” = C-span{v1,...,v,} so that
V=V"eV, (2.2)

is a decomposition of V into definite subspaces.

2.2. The Groups G and P. Write G := U(V) to denote the unitary group attached to V with
the convention that G acts on the right of V. More precisely, G is the algebraic group over QQ
whose points on a test Q-algebra R satisfy

G(R)={9 € GL(V®gR):if v,w € V®g R then (v-g,w-g) = (v,w)}.
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The Heisenberg parabolic P < G is defined as the stabilizer in G of U. A Levi factor M < P
may be defined as the stabilizer of UY in P. Through its action on the decomposition (2.1), M is
identified as

M= U(Vo) X ResE/QGm.
Given a Q-algebra R we write elements in M(R) as pairs (h,z) with h € U(Vy)(R) and z €
(R ®g E)*. We normalize the coordinate z so that the element (h,z) € M(Q) acts on a vector
(u,v,u") € Ud Vo & UY via the formula

(w,v,u") - (h,z) = (z tu,v - h,Zu").

2.3. The Lie algebras gy and nyg. We write V to denote the vector space obtained from V by
twisting the complex structure via the conjugation involution, i.e., V is the C-vector space spanned
by the set {v: v € V'} subject to the relations v + w = v + w for all v,w € V and @-v = a- v for
all « € C and v € V. Then V is identified with the C-linear dual V'V of V via the map ¥+ (-, v).
Write t: V ®c V — V ®¢ V for the C-semilinear involution induced by (v ® )" = w ® T. Using
the identification End(V) ~ V ®@c VY ~ V ®c V, go := Lie(G) can be realized as

go=(Vec V)= (2.3)

Thus go = R-span{v @ W —w®7v: v,w € V'}. The primary benefit to this presentation of g is that
the right adjoint action of G on g is given by the simple formula
(VRW—-—wRD)-g=1v9RWg— wg R Vg.

Let N < P denote the unipotent radical of P and set N = N(R). The commutator subgroup
of N is equal to the center Z of N. Thus characters of N are in bijection with characters of
N2b = N/Z. In terms of the identification (2.3), Z = {exp(tib; ® b1): t € R}. Let n3® = Lie(N?P)
so that

nd® = R-span{v @ by — b1 @T: v € Vp}. (2.4)
The presentation (2.4) allows us to parameterize the set of unitary characters of N using the vector
space Vj := Vo ®g R as follows. Given T" € Vp, let X7+ be the unique character of N such that if
w € Vp then
XT.00(exp(w ® by — by @ W)) = e~ 2mim({Tw)) | (2.5)
Since (v, w) — —Im((v,w)) defines a non-degenerate symplectic form on Vj, we obtain an identifi-
cation
Vo = Hom(N,CY), T+ XT0o- (2.6)
If T € Vo we let w € Vo(A) and define x7: N(Q)\IN(A) — C! via the formula y7(exp(w ® by —
by @ w)) = Y(—Im((T,w))). The adelic analogue of (2.6) is given by

Vo = Hom(N(Q)\N(A),C"), T+ x7. (2.7)
Note that if m = (h, z) € M(Q) and T € Vj, then
xr(mexp(w @by — by @W)m ™) = xor.plexp(w ® by — by @W)). (2.8)

2.4. The Cartan Decomposition in gg. Define a maximal compact subgroup Ko, = U(V,") x
U(V,) as the stabilizer in G of the decomposition (2.2). Let ¢« € K be the element which acts as
the identity on V;r and acts as —1 on V. The Cartan involution associated to K. is given by
0 := Ad(c). Therefore € := Lie(K) is the 41 eigenspace of 6 and pg := g~ ! is a K-stable
subspace of gg. We wish to identify p := pg ®r C as a K.-representation. As pg is itself a R-
subspace of the C-vector space V ®c V, we write v/—1 to denote the imaginary unit in the copy of

C appearing in the tensor pg @g C. Given j € {1,2} and k € {1,...,n}, let

jFH) L (2.9)

1 .
[u; (X)@k]i = (uj @ U, — vk @ U;) @ (2> +i(u; @ T + v @ Uj) @ ( 5
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Define
pE = C-span{[u; ® T)]*: j = 1,2 and k=1,...,n}.
Then as a K ,-module,
p=pT@p. (2.10)

Moreover, we have K,.-module identifications
pt~ViteV,  and  p~ VeV (2.11)

satisfying [uj @ Tg]T +— u; ® Uy, and [u; ® U]~ — T, ® vy, respectively.

3. THE FOURIER EXPANSION OF QUATERNIONIC MODULAR FORMS ON G

Recall that G is the unitary group associated to a hermitian space over E of signature (2,n) and
P = MN is the Heisenberg parabolic in G defined as the stabilizer of the isotropic line U = FEb;.
Fix a right invariant measure dn on N(Q)\N(A).

3.1. Quaternionic Modular Forms on G. Recall that V = V&g R, G = G(R), and K =
U(V,") x U(V,) is a maximal compact subgroup of G defined as the stabilizer of the orthogonal
decomposition V = V;" @ V.~ (see (2.2)). Given ¢ € Z>1, consider the K-representation

V= (Sym%V; ® det [—jfm) X1,
Here 1 denotes the trivial representation of U(V,”). When ¢ > n, Gross and Wallach [GW96]
construct an irreducible unitary representation II, of GG such that II, is discrete series and contains
V¢ as its minimal K-type with multiplicity 1. Similarly, if 1 < L”T_lj < ¢ < n then Gross and
Wallach (loc. cite) construct an irreducible unitary representation II; which is no longer discrete
series, but contains V, as its minimal K-type with multiplicity 1. In §3 of this paper, ¢ will denote
an integer satisfying either £ > n or 1 < L"T_IJ </l <n.

The Schmid operators studied in this paper fall into a broad family of differential operators
defined in [Sch89]. For the special case of the Schmid operators D; and D, associated to the
representation Ily, the definition proceeds as follows. In the notation of (2.10) fix a basis {Xj }
of p*. The Killing form on g induces a duality isomorphism p~ =~ (p*)". Let {X;} denote the
basis of p~ dual to {X}. Given X € go and ¢ € C*(G, V), the right regular action of X on ¢ is
defined by X¢(g) = %(gp(g exp(tX))|i=o. This action extends linearly to g.

Define operators ZS; and 5; via

Df:C®(G, Vo) = C®(G,Vi®cpT), ¢ Dfp:=Y Xipa X7

S
For v e {—¢,... 0}, let
{—v L+
v u v u
W =gy ad )= (3.1)

so that B = {[uf™?|[u5"]: v=—¢,...,0,... £} is a basis of V;. In terms of the basis B, a U(V,")-
equivariant contraction Sym%V+ X VJr — Sym%_lVﬂs given by
™) © T o ) and ™) © 7 o ™)

We have another contraction Sym%V;r X V2 — detUgVﬂ (X)Sym%*lv;r defined by

[ug Mluy ™ @ ur = —up*Nuy ™ and fuiV)[up ™ @ up = [ug 0 uy™).
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These contractions yield K.-equivariant projections

V@ p~ = (Sym?V,t @ det ;va;) @V, )RV~ — (SymZ1V," @ det va;>) XV,
_ — — — —(l+1 —
m Ve pt = (Sym* Vst @det o @ V)RV — (Sym™ TV @ detU(V}))) XV,

The Schmid operators D} and D, are defined as

DS C®(G,Vy) — C=(G, (Sym* 1V, @ det ;va+)) RKV,), @7t oDfy,
2 _ ~ 3.2
Dy : C®(G,Vy) = C(G, (Sym2V;" @ det [‘Jgfvtlf) RV, ), @~ oD (3:2)
2

With the operators Dét in hand, we may define quaternionic modular forms on G.

Definition 3.1. A weight { quaternionic modular form on G is a smooth function F': G(A) — V,
of moderate growth such that:

(i) If v € G(Q) and g € G(A) then F(vyg) = F(g).

(ii) If k € Koo and g € G(A) then F(gk) = F(g) - k.

(iii) The functions D} F|¢ and D, F| vanish identically on G.
3.2. Generalized Whittaker Coefficients. We now introduce the class of generalized Whittaker
functions which feature in our study of the Fourier expansion of quaternionic modular forms on G.

Definition 3.2. Let N = N(R) and fix T € Vj. Write
CR (G Vo)’

to denote the space of smooth moderate growth functions W, : G — V satisfying:
(a) If k € K and g € G then W, (gk) = Wy(9) - k.

(b) If n € N and g € G then Wy (ng) = XT.00(n)Wy(9).

(¢) The functions D W, and D, W), vanish identically on G.

Remark 3.3. Fix T' € Vj and let II}° be the space of smooth vectors in II, taken relative to its
Fréchet topology. The space of generalized Whittaker functionals is

WhN(Hb XT,OO) = Hom(]:\(/mt(ﬂl(?o’ XT,OO)'

If {v;} _¢<v<¢ is a basis for Vy and {v;"}_s<y<¢ is the dual basis of V;/ then the map

¢
Why (I, X7,00) — Cﬁ,dT(GaVe)zfov L <9 > Z L(g- Ui)U;/)
i=——¢

is injective. Here we are using the fact that V) ~ V,. As a direct consequence of [Wal03, Theorem
16] we have that for £ > n,
1, if(T,T) >0,

0, if (T,T) <0. (3:3)

dim ¢Why (I, x7.00) = {

Theorem 3.4. Suppose T' € Vjy is non-zero. Define a function

Br: M — C, Br(h,z) = (ug, 2T - h)|.

4
ﬁ!
We have

dim ¢ (CR(G,V)RT") = {
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If (T,T) > 0, then there exists a unique function Wr € C}{}?T(G,Vg)%:() satisfying

2) = 5[26+2 |Br(h, 2)| ! AN Tl =0l
Walhs) = 3 e (G ) & Qe ot 10 (3.4

for all (h,z) € M. Here K, denotes the K-Bessel function K,(z) =1 [;° Lo e+ gt
Remark 3.5. The n =1 case of the above theorem is established in [KKO95].

We dedicate §3.3 and §3.4 to a detailed presentation of the proof of Theorem 3.4. To give an
indication of the method, suppose T' € Vj satisfies T' # 0 and let W : G — V; be a smooth function
of moderate growth satisfying hypotheses (a) and (b) of Definition 3.2. We write {Wr,: G —
V¢} —e<v<e for the unique family of scalar valued functions such that if g € G then

Wr(g) = Z Wro(g)[uy | [ust)- (3.5)
—A<v<tl

The first step in the proof of Theorem 3.4 is to consider the restrictions D;WT\ M and DZ_WT] M-
We express the conditions DEEWT| M = 0 as a system of differential equations involving the functions
Wr,, (see Proposition 3.9). In §3.4.1 we arrive at the formula (3.4) by solving a subset of the system
of equations in Proposition 3.9. Formula (3.4) is not smooth as a function on M unless (T,T) > 0,
(see Proposition 3.11) and this observation, together with our analysis in §3.4.1 implies the (T, T) <
0 case of Theorem 3.4 as well as the inequality dim Cﬁ}(G,Vlg)g‘: 0 <1 (see Proposition 3.11).

It remains to show that if (T, 7) > 0 then (3.4) defines an element of C}{}?F(G,Vg)%: 0. This final
check is carried out in §3.4.2.

Corollary 3.6. Suppose F: G(A) — V, is a weight ¢ quaternionic modular form. Let Z be the
center of the Heisenberg unipotent radical N. Write Fz (resp. Fn) for the constant term of F
along Z (resp. N). There exist locally constant functions {ar(F,-): G(Agn) = Clrev,: (1,1)>0
such that if gan € G(Agn) and goo € G(R) then

FZ (gﬁngoo) = FN(gﬁngoo) + Z ClT(F, gﬁn)WT(gOO) (36)
TeVo—{0}: (T, T)>0

Moreover, if F' is cuspidal then the Fourier expansion of Fyz takes the form

FZ(gﬁngoo) = Z aT(F7 gﬁn)WT(goo)' (37)
TeVy: (T,T)>0

Proof. The proof of formula (3.6) is standard given Theorem 3.4. Indeed, the domain of integration
N(Q)\N(A) is compact. So if gr € G(Agyp), then the function

FT('gf): G(R) —Vy, FT(googf) = F(ngoogﬁn)XT(n)_l dn

/N (@\N(4)
satisfies the hypotheses of Definition 3.2. Applying Theorem 3.4, it follows that Fr = 0 whenever
(I''T) < 0. Similarly, Theorem 3.4 implies that there exists a scalar ar(F,gan) € C such that
Fr(g9f9s) = ar(F, gain)Wr(goo) whenever T' # 0 and (T, T) > 0. The proof of (3.6) now follows
by Fourier expanding Fz in characters of N/Z. For the proof of (3.7), assume F' is cuspidal.
Let T € Vg be non-zero and suppose (T,T) = 0. Fixing ga, € G(Agy,) it suffices to show that
ar(F, gan) = 0. We consider the equality

a1 (F, gsn)Wr(goo) = / F(ngangoo) xr(n)dn. (3.8)
N(Q)\N(4)

On the one hand, F is a cusp form and thus bounded on G(A). It follows that the left-hand side of

(3.8) is bounded as a function of g, relative to the K, invariant norm on V,. On the other hand,
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if —¢ < v < ¢ then the K-Bessel function K,(z) is unbounded as x — 0. Since M*=! — R,
(1,h) = [{uz - h=1,T)| is not bounded away from zero, (3.4) implies that Wr(gso) is unbounded
relative to the K, invariant norm on V,. Hence ap(F, gs,) = 0 and the proof is complete. ]

3.3. Explicating the Schmid Equations. In this subsection we begin the proof of Theorem 3.4.
Throughout §3.3 we fix T' € Vj such that T # 0 and suppose Wr: G — R is a smooth function
satisfying conditions (a) and (b) of Definition 3.2.

3.3.1. Twasawa Coordinates. Let n (resp. m) denote the complexified Lie algebra of N (resp. M).
The next lemma will be used to study the restrictions D}Wﬂ M- The proof is a direct computation.

Lemma 3.7. In terms of the Iwasawa decomposition g = n +m + &, the element [u; ® Vg|* is
expressed as [uj & W]i = X*T 4+ Y+ + H* where X* € n, Y* € m, and H* € ¢ and the triple
(XE,Y*E HF) is defined as follows:

(a) For j=1and k =n, X* = (2ib1 ® b)) ® (#), YE = (by @b — b1 ®b2) ® (3),

and HE = i(b; @ by + by ® by) ® (i‘F)

(b) Forj=1and1<k<n, X*= %[bl @g)E, YT =0, and H* = —[v, @ g *.

(c) Forj=2andk=n, X* = %[uz @b]E, YT =0, and H* = —[us @ u7]™*.

(d) Forj=2and1<k<n, XT=0,Y" = [uy ®@7;]F, H* = 0.

3.3.2. The Right Regular Actions of p*. We apply Lemma 3.7 to calculate the right regular action
of p on Wy. Throughout elements m = (h, z) € M are expressed as triples (h,w, s) with z = we'®,
w € Ryg, and s € [0,27). The function Wr,, is defined in (3.5).

Proposition 3.8. .
(a) If m = (h,w,s) and z = we" then [uj; @ TE) T Wr(m) equals

— 3w Wr(h,w, s) — %Z—égvgé W (hyw, s)vuf =] [ust), ifj=1and k =n,
WWTW,Z% ifi=1land1 <k <n,
SHEELIWE(m) + Y peyer Wra(m)(€ 4+ v + Dui™ g™, if j =2 and k=n,
Z—ZSUSZ[UQ @ Tg) T W (m), ifj=2and 1 <k <n.

(b) If m = (h,w,s) and z = we® then [uj ® vg]”" Wr(m) equals

—swdWr(h,w,s) + 3 > <ot Wrw(h, w, s)v[uf=? [ub™], ifj=1and k =n,
2Tr(v1\c/gT'h> Wi (h, 2), ifj=1and1 <k <n,
B2t Wi (m) = Y ey Wra(m)(€ = v+ Dfuf g™, if j =2 and k=,
> _rco<eltz @ O] Wy (m), ifj=2and1 <k <n.

Proof. The proof is a direct computation. To give an example of the method of proof we prove the
formulas for [u; ® T,|TWr.

Let X*, Y* and HT be as in Lemma 3.7(a). Then X* € Lie(Z) and since 7 is trivial on Z,
we may use property (b) of Definition 3.2 to deduce that

X*Wr =0. (3.9)
If m = (h,w,s) and t € R then mexp(t(by ® by — by ® by) = (h, e~ tw, s). Therefore
Y= - Wr(m) = —= | e"w—Wr(h,e ‘w,s) ||t=0 = —sw=—Wr(h,w,s). (3.10)

2 ow 2 OJw
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Finally, if t € R then [u{=?][u5™"] - exp(ti(by @ by + by @ba)) = eV~ [ul~"][uf"™]. Thus by property
(a) of Definition 3.2 we have

+v/-14d ottt
H* Wr(m) = =g—— | > e/ " Wry(m)ui™us™] | le=o
—A<v<l

=LY Wratmelud ) (3.11)
—A<v<l

By Lemma 3.7 (a), [u1 ® U] "Wr = XTWr + HEWr + YEWr. As such, the formulas for [u; ®
Tn]TWr may be derived from (3.9), (3.10), and (3.11). O

3.3.3. Ezpansion of the Schmid operator. We now apply the result of Proposition 3.8 to re-express
the condition D}Wﬂ »m = 0 as a system of scalar equations.

Proposition 3.9. Let m = (h,w,s) € M and set z = we®®.
(a) We have Dy Wr|y = 0 if and only if

ﬁ(UQ,ZT RYWrppi(m) =0, ifv=—(,...,0—1,

(W —2(£+ 1) —v)Wpu(m) + 2%
[ug @ U] T W ,(m) — %(vk, 2T - h)Wry_1(m) =0, ifl1<k<nand—{<v</.

(b) We have D, Wr|y = 0 if and only if

V2
[ug ® Tg]~Wr,(m) — %(vk,zT “hYWrypi(m) =0, if1<k<nand —¢<v <L

)

{ (WO — 2(0 + 1) + 0V)Wrp(m) + 2 (ug, 2T - h)yWrp_1(m) =0, ifv=—L+1,...,4,

Proof. We prove part (a) of the proposition. Applying the identification p~ ~ V;“ ® V.~ (2.11) and
Proposition 3.8(a) we obtain

27 (v ,zT h o
DfWr(m)=— > Z v 2m0k 2L 10y, 2) ) @7 R
——<v<l k=1
+ ) Z[uzmk]*WT,v(m)[ Vbt @ T Koy
—<v<l k=1
1 1
— 500 Wr(m) 8T Ko, — 5 > Wry(molui]uy™] @ 7 Ko,
—<v<t
21 (ug, 2T - h) B
—————Wr(m) Quy X,
\/5 T( ) 2
+ Y Wrp(m)(+ v+ Duf™ " us ) @ 1 Koo,
—L<v</t
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Applying the contraction operator 7 defined in §3.1 it follows that

n—1 YR
2m (v, 21T - h _ v v
DfWilm) == Y Y O Wi ) [
—l<v<l k=1

+ Z ni[UQ @ T T W (m) [ul ™ [us T R oy

—t<v<l k=1
1 —v v—
=5 > (WWryoa(m) + (v = Wrp1(m) [ug*[uy™ | Doy
—Ll<v<d
27 v o
=5 2 {u T W () B
—Ll<v<dt
+ > Wrpmai(m)(¢+0)ug V[uy™ " Koy,
l<v<t

One obtains the system of equations in (a) by equating the coefficients of the terms [u{~"][us" "]
v, to zero in the above expansion of DZFWT| M- O

3.4. Solving the Schmid Equations. Throughout this subsection T' € V} is non-zero and we
suppose Wr: G — V; is a function of moderate growth satisfying conditions (a) and (b) of Definition
3.2 together with the hypothesis DEEWT|M =0.

3.4.1. Establishing the Candidate Solution. For —¢ < v < { define fr,: M — C as

fro(h,w,s) = w72(£+1)WT’v(h,w, s). (3.12)
Given (h,z) € M we define Br(h, z) = %(uz, 2T - h). Then Proposition 3.9 implies

(WD + V) fr.u(hyw, 8) = —Br(h,w, s) fro_1(hw,s), —€<v<L. (3.13)

Thus if —¢ < v < v then

((wa’w)z - UQ)fT,v(h7 w, 5) - ‘5T(h7 w, S)PfT,v(ha w, S)- (314)
The condition Sr(m) # 0 is non-empty and Zariski open on M. Fix (h,1,s) € M such that
Br(h,1,s) # 0. Under the substitution u = w - |Sp(h, 1, s)|, (3.14) reduces to the Bessel equation
O2fr. + %BufTﬂ) - (14 %z)fT,v = 0 [GRO7, 8.494, pg. 932]. Let I, and K, denote the modified
Bessel functions defined in [GR07, 8.431, pg. 916] and [GR07, 8.432, pg. 917] respectively. So I,,(u)

is of exponential growth as u — oo and K,(u) is bounded as u — co. Since Wr, is of moderate
growth as w — oo, there exists a constant Y7, (h,s) € C such that

{ (waw - ’U)fT,'U(ha w, S) = _BT(h‘7w7 S)fT,U+1(h7w7 S)? —{<v<{

fro(h,w,s) =Yru(h, $)K(|Br(h,w,s)|). (3.15)
Using the fact that w - 9,u = u, we may apply [GRO7, 8.486, pg 929] to deduce
ou 0
—(w0y — v)Ky(u) = —(w%% —0)Ky(u) = —(udy — v)Ky(u) = uKyiq(u).

It follows that Sr(w, s, h) Y7 4q1(s, h)Kyt1(uw) = Yy (s, h)|Br(w, s, h)|Kyi1(u). As Ky (u) is nowhere
vanishing, Y7 ,11(s, h) = Y7.,(s, h)|Br(w, s, h)|Br(w, s,h) ! and

Br(h,w,5)\"
ww) K, (1Br(hw, 5))). (3.16)

The next lemma will be used to show that the functions Y7(s, h) are constant in h.
11
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Lemma 3.10. Ifk=1,...,n— 1 then as functions on M we have

[ug @ U] " - Br =0 and [ug @ Ug] ™ - Br = 0.
Proof. To give an indication of the method of proof we explain why [us @ v5]* - Br = 0. B
definition of the exponential, if ¢ € R then ug - exp(—t(ua ® T — v ® Uz)) = cosh(t)ug — sinh(t)vy
and ug - exp(—it(ug2 ® U + v ® uz)) = cosh(t)ug + sinh(it)vg. It follows that if m = (h,z) € M
then [us ® vg] T - Br(m) equals

<

2 d
[ gpr ({cosh(t)ug — sinh(t)vy, 2T - h) — v/—1(cosh(t)us + sinh(it)vk, 2T - h))|s=o-
Simplifying the above expression yields [us ® vg]™ - Br(m) = 0 which completes the proof. O

Proposition 3.11. If (T, T) < 0 then Wy = 0, otherwise there exists a constant Yy € C such that
if m=(h,z) € M and Br(m) # 0 then

Wr(m) = Yo 3 |2+ ('BT“")') 5, (1B (m) ) [l s ™).

icuct Br(m)
Before we prove Proposition 3.11, we prove the following claim.
Claim 3.4.1. Given (h,z) € M such that fr(h,z) # 0 define

Br(h, =)\
BT(M) K, (1Br(h, 2)))- (3.17)

Then Wr,, satisfies the system of equations in Proposition 3.9.

Wry(h, 2) = 22D (

Proof. We explain why (3.17) satisfies the system involving [uo ®@vy]* Wy, (m). To simplify notation
fix k € {1,...,n — 1} and write dR = [uz ® U;]". A computation using Lemma 3.10 and [GRO7,
8.486, pg. 929] implies

dR Wr ) = —W “Wro—1(187])- (3.18)

Moreover, a computation similar to that given in the proof of Lemma 3.10 yields
dR(Br) = —V2m(vg, 2T - h). (3.19)
Since dR(|Br|) = s22-dR(Br), (3.18) and (3.19) imply the claimed statement. O

-~ 2[Br|

Proof of Proposition 3.11. So far we have shown that if m = (h,w, s) € M satisfies fr(h,w,s) # 0
then there exists a constant Y7 (h,s) € C such that

Wr(m) = Yro(h,s) - > w2 (‘BT("‘)‘)UKU<|6T<m>|>[u§—”Mu§+v]-

icect Br(m)

We first show that Y7 o(h,s) is constant in h and s. The fact that Wr(gk) = Wr(g) - k implies
that fr.,(h,w,s) = e* fr,(h,w,0). Moreover 87 (h,w,s) = e~*"Br(h,w,0). It follows from (3.16)
that Yro(h,s) = Yro(h,0). To show that Y7 (h,0) is constant in h, it suffices to show that
[uz ®@ D) ¥ Yr0(h,0) = 0 for all 1 < k < n. Since we are assuming D}WT\M = 0, this follows from
Proposition 3.9 and Claim 3.4.1.

It remains to show that Wy = 0 whenever (T,T) < 0. Thus suppose (T, T) < 0. We know
that there exists a constant Yy € C such that if m € M satisfies Sp(m) # 0 then Wp(m) =
Yo 3 jeyes Wrw(m)[uf ™) [ub™] with Wy, as defined in (3.17). Since (T,T) < 0 there exists b’ €

U(Vp) such that the element m’ = (h/,;1) € M satisfies Br(m’) = 0. The set {m € M: Br(m) # 0}
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is Zariski open in M and so there exists a sequence {m; € M: i € Z>1} such that m; — m’ as
i — oo and Br(m;) # 0 for all ¢ > 1. By assumption Wy(m) is continuous at m = m’ and so

Wr(m') =Yy Y lim (Wry(mi)) fuy~fuy™). (320)

—<v<t
Writing m; = (hy, 2;), formula (3.17) implies

lim [Wr, (m;)| = lim |22 K, (|8 (my))).
11— 00 11— 00

Since m; — m’ we know that z; — 1 as i — oo. Moreover, K,(u) has a pole at u = 0 and so
K,(|Br(m;)]) — oo as i — oo. It follows that lim; o [Wr(m;)| does not exist. Therefore the
equality (3.20) is only possible if Yy = 0. O

3.4.2. Verifying the Schmid Equations. Recall the candidate solution Wr: G — V, defined by (3.4).

From §3.4.1 we know either Cﬁg(T(G,Vg)Q{: % is zero, or it is spanned by the function Wy. Using

Proposition 3.9 and Claim 3.4.1, one may check that DEEWT\ v = 0. To prove Theorem 3.4 it
remains to prove the lemma below.

Lemma 3.12. Assume (I, T) > 0. Then Wr is a smooth function of moderate growth satisfying
the conditions D}WT =0.

Proof. Since (T, T) > 0, we have fr(m) # 0 for all m € M. It follows that (3.4) defines a
smooth function on G. According to [GRO7, 8.446, pg. 919], the leading order term in the Laurent
expansion of K,(u) as u — 0 is 4% and so (3.4) is of moderate growth. It remains to show that
DEEWT = 0. As we have already explained, DEEWT| m = 0. Moreover, if n € N and m € M then
DétWT(nm) = XT(n)DétWT(m) = 0. By the K, equivariance of Dgt it follows that DEEWT =0. O

4. GENERALITIES ON THE THETA CORRESPONDENCE

In this section, we review the theory of theta correspondence for the dual pair (U(2,n),U(1,1)).
Subsection 4.1 describes several preliminaries on Weil representations of the dual pair U(2,n) X
U(1,1). In subsection 4.2 we calculate the Fourier coefficient of the theta lift of a general cusp form
f from U(1,1) to U(2,n). Subsection 4.3 recalls a classical argument, dating back to [Pia83], which
shows that the theta lift of a cusp form from U(1,1) to U(2,n) is non-zero. Finally, in subsection
4.4 we review the definition of Poincaré series, and present a formal computation describing the
theta lift from Poincaré series on U(1,1) to U(2,n).

4.1. The Metaplectic Group and Weil representation. Let (W, (, }w) be a split skew-
hermitian space over E of signature (1,1). So W is a 2-dimensional E-vector space. We write
{w4,w_} for an isotropic basic of W satisfying (wi,w_)w = 1. Let H = U(W) be the Q-
rational unitary group associated to (W, (-, -)w) with the convention that H acts on the right of
W. Counsider the Q-vector space W =V @ W endowed with the symplectic form

L vR@w,v @uw >= trE/@(<v,v/><w,w’)W), for v,v' € V,w,w’ € W.

Through its natural action on V ® g W, the group G x H is embedded in Sp(W) as a dual pair.
Write Mp(W)(A) — Sp(W)(A) for the metaplectic C*-extension associated to 1 and let wy, denote
the corresponding Weil representation (see for example [Pra93, §8]). The cover Mp(W)(A) —
Sp(W)(A) splits over the image of G(A) x H(A) in Sp(W)(A). To normalize such a splitting, let
x: EX\A% — C! denote a character such that y|,x coincides with the character associated to the
extension F/Q under class field theory. It follows from [GR91] that the pair (¢, x) determines
a splitting sy, : G(A) x H(A) — Mp(W)(A). The composition wy, = wy 0 sy, defines a Weil
representation of G(A) x H(A).
13



4.1.1. The Schrodinger model. Let X = V@ wy and Y = V® w_ so that W = X @ Y is a
decomposition into Lagrangian subspaces. The Weil representation wy, , of G(A) x H(A) admits a
model in the Schwartz space S(X(A)). We write elements in H(A) as matrices relative to the basis
{wy,w_}. Given ¢ € S(X(A)), z € V(A), a € A}, be A, and g € G(A), we have [Ich04, §1]

Wi (1, (1)) Bz @ w4) = (@) al 2 oz © aw,),
wy (1, (18)) ¢z @ wy) = ¢((z, 2)b)d(z @ wy),

wyx (1, (1)) ol @wy) =5, V)Folr @ wy) =¥, V) / oy @ wy)ve((z,y))dy,

V(A)

(4.1)

Wy (9, 1)o(z @ wy) = p(rg @ wy),

Here, v(, V) is the Weil index [Wei64, n°14, pg. 161], and dy denotes the Haar measure on V(A)
relative to which F is self-dual. For an algebraic group R, we write [R] to denote the adelic quotient
R(F)\R(A). For a Schwartz function ¢ € S(X(A)), g € G(A), and h € H(A) we define a theta
function 6(-, -;¢): [G] x [H] — C by

0(g.hid) = D wunxl(g:W)e(&), (4.2)
£eX(Q)

which is of moderate growth in each variable. For a cusp form f on H(A), the theta-lift 6(f, ¢): [G] —
C is defined as

0(f.6)(g) = / 0(g. 1 6) f (h)dh. (4.3)
H(Q)\H(A)

Since f is cuspidal, the above integral converges absolutely.

4.1.2. The mized model. Recall that we have a decomposition V. = U @ Vg @ UY. Then the
decomposition W = Xy @ Yy, with

Xu :V0®w+@b1 QW, Yy=b WS Vy®w_,
is a Lagrangian decomposition of W. We define a partial Fourier transform
Fu : S(Vewy)(A)) = S((hh @ W)(A)) @ S((Vo ® wi)(A))

by

.FU(¢)(61®mw+,b1®yw_,v®w+) = /qb(bl®xw+,v®w+,b2®w+z)¢E(<zw+,yw_>)dz, (44)
Ap

where x € Ap, y € Ag, and v € V((A). Then Fy defines an isomorphism between the above
two spaces, and this gives rise to the mixed model for the Weil representation w = wy yx, of
G(A) x H(A) on S((Vo @ X)(A)) @ S((U @ W)(A)).

We now write down some explicit formulas for the action of wy, , x, in this model. Recall that
P = M x N is the Heisenberg parabolic subgroup, with M = U(Vj) x Resg @G, g. Note that N
is 2-step nilpotent. An element n € N fixes U pointwise. If {h1,...,h,} is an ordered basis of Vy,
then with respect to the basis {b1, h1,..., hy, b2}, the center Z = [N, N] is given by the matrices

1
Z=<n(z)=1[(0 I, € N: 2y € FE such that zg = —29
20 0 1
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Denote
1
No = n(zg) = * I, e N:zp €V
—%<CL‘0,$0> i) 1

In the notation of (2.4), n(z¢) = exp(b; ® To — zo ® b1). Note that N = ZNp.
Given a vector vy € Vo(A), we define a character n,, on No(A) by

oo (n(2)) = w(%trE/@((—vo,@)), z € Vo(A). (4.5)

Write 7y,,00 for the archimedean component of 7,,. A short computation reveals that the character
Tho,00 18 Telated to the character x7,o of (2.5) by

Mg ,00(1(2)) = X—ivg,00(n()) (4.6)
where x € V. We have the following formulas.

Lemma 4.1. Let x € Ap, y € Ag, v € Vo(A), ¢ € S(li @ W)(A)) @ S(Vo®@ w4 )(A)). We have

(U’vaX,XU <<a a_1>>¢/(b1 (039 TW4, bl (039 Yyw—_,v [ w+)

(4.7)
=x(a)**"al _¢'(by @ azwy, by @ T 'yw_,av @ wy),
and
w 1b¢’(b®mwb®wv®w)
b,x,Xu 1 1 +,01 W Yyw—, + (4.8)
(0, )Y (br ® Ty by © (y + by, v ® wy).
For n(zy),n(xz¢) € N(A), we have
W,y xy (n(20))¢' (b1 ® Tw., by @ yw—, v @ w) (4.9)
=p(—2079)¢ (b1 ® zwi, by @ yw_,v @ W) '
and
Wy Xy (n(20)) ¢ (b1 @ w4, b1 @ yw_, v @ wy)
1, (4.10)
=p(—(z - (—5300 7o) + (v,70))Y)d (b1 ® zw, by @ yw_, (v + TT0) @ W4 ).
Proof. This can be checked by assuming ¢/ = Fy(¢) for ¢ € S((V @ wi)(A)). See, for example,
[Ral84, pp. 340-341], [GI16, Section 7.4] and [Pol21, Proposition 2.1.1], for similar statements. We
omit the details. OJ
Given a Schwartz function ¢ € S(X(A)), recall the theta function (-, -; ¢): [G] x [H] — C defined
n (4.2). Similarly, given a Schwartz function ¢’ € S((b1 ® W)(A)) @ S((Vo ® w)(A)), one can
define

0(g, 1) = Y wyxglg, 1) ().

£eXyu(Q)
It is known that if ¢’ = Fy(¢), then

9(9? h; (Z)) = e(ga h; ¢,)

In the rest of the paper, we will simply write w to denote the Weil representation. The reader
may determine which model of w we are using based on the domain of the Schwartz data ¢.
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4.2. Fourier Coefficients of the Theta Lift. Let Ny = {(1 x) S H} and My = { <a a1> S H}

1
Suppose t € Q and let x; : [Ny] — C* be defined by

Xt <1 916> = Y(tx).

For an automorphic form ¢ on H(A), the y;-Fourier coefficient of f is

fi(g) th /fngXt

[Ny]

Given a character y : [N] — C* and a Schwartz function ¢ € S(X(A)) we define

0(g.h; ) = / B(ng, b $)x™"(n)dn.

[N]
Let f: [H] — C be a cusp form and recall the theta-lift 0(f; gb) deﬁned in (4.3). Then the X—Fourier
coefficient of the theta lift 6(f; ¢) along N is given by 0(f, ¢)y(9) = [ 0x(g,h;¢)f(h)dh

[H]
In the case when (vg, vg) # 0, the next proposition expresses the Fourier coefficient 6(f, ¢)
an integral transform of the Fourier coefficient f_,, -

vy as

Proposition 4.2. Suppose 0(f, ¢) is the theta function on G(A) associated to a cuspidal automor-
phic function f on H(A) and a Schwartz function ¢ € S(Xuy(A)). Suppose vy is in Vo(Q) such
that (vo,vo) # 0. Set zy, = b1 @ w_ + vg @ wi. Then

0(F. S, (9) = / (g, B)D(200) f—(ug.uny (). (4.11)
Ny(A)\H(A)

Proof. Without loss of generality we may assume g = 1 and ¢ = ¢pu®@d¢y, with ¢y € S((b1eW)(A))
and ¢v, € S((Vo ® wy)(A)). Taking the constant term of 6(1, h; ¢) along Z C N, we see that

L) = [ oemat:= [ 3 wlamoe)d:

Z(Q\Z(4) Z(Q)\z(a) §€Xu(Q)
-/ S ws(-zpe(L e @ wy + b @ w)dz
Z(Q\Z(A) vEVo(Q)

w=zw4+yw_ €W (Q)

where in the last equality we have used (4.9). Interchanging the order of summation and the
integration we obtain

0z(1,h; §) = > w(1,h)p(v ® wy + by ® w)
Wl()(S)V<0(Q)> o
we {w,w =
W (4.12)

= by, (L hs v,) ( S w(Lhulb ®w>)

weEW (Q):{w,w)w=0

where Ov, (1, h; dv,) = 3 evy (@) (W(h)dv,) (v @ wy). The non-zero isotropic vectors in W(Q) lie
in a single H(Q) orbit. In fact

{we W(Q) : (w,w)w =0} ={0} Uw_ - Ny(Q)\H(Q).
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In the mixed model of w, the actions of Ny(Q) and My(Q) are given in Lemma 4.1. Moreover, a
similar computation yields

w (1, (_1 1)) du(br @ w) = ¢pu(br @ w <_1 1))

for any w € W(A). We conclude that for any hy € H(Q), w(1, ho)opu (b1 ® w_) = ¢u(b1 @ w_hy).
Therefore, (4.12) can be rewritten as

Ov, (1, h; dv,) (w(l, h)pu(0) + > w(l hoh)pu(br ® w)) .

ho€Ny (Q)\H(Q)
Hence the 7,,-Fourier coefficient 6, (1,h;¢) is given by

/ Ov, (n(wo), h; pvy)w(n(zo), h)pu(0)n—v,(n(x0))dzo

[No]

+ / Ov,(n(zo), h; dv,) > w(n(zo), hoh)gu (b1 @ w—)n—v,(n(zo))dzo.

[No] ho€Ny (Q)\H(Q)

(4.13)

By (4.10), the product Oy, (n(zo), h; v, )w(n(zo), h)pu(0) is independent of zg. Furthermore, since
vo # 0, the integral f[No] N—vo(n(x0))dzo = 0. Hence, the first term in (4.13) is equal to 0 and

0(F. By (1) = / . (1.h:0)f(h)dh
[H]

_ / / By, (n(x0), h: by, Jo(n(x0), h)bu (br @ w_)n—vg (n(w0))dzo f(R)dh.  (4.14)
Ny (Q)\E(A) (Mo

Another application (4.10) then yields an expression for (f, ¢),, (1) of the form

Z w(l, h)(d)vo X ¢U)(UQ Quwsy+b ® w_)f(h) / ¢E(—<U — Uo,$0>)d$0dh. (4.15)

Ny (Q)\H(a) v€Vo(Q) [No]

Since the pairing (, ) is non-degenerate on Vy, (4.15) simplifies to

00, = [ @Bt S w_ + v © wi)f(h)ah
Ny (Q)\H(4)
Now we use (4.8) to get

0(f, P, (1)

_ / / w(l,(l f>h>¢(b1®w_+vo®w+)f<<1 “f)h)dxdh

Ny (A)\H(A) Ny(Q)\Ny(A)

= / w(1,h) ¢(b1 @ w_ + vy ® wy) / f ((1 516> h) ¥ ((vo, vo)x)dxdh

Ny (A)\H(A) Ny(Q)\Ny(A)
= / w(1,h) p(by @ w_ 4+ vy @ wy) / f ((1 516> h> X (vo,v0) () dadh.
Ny (A)\H(A) Ny(Q)\Ny(A)
The inner integration in the above formula is equal to f_(,, ., (k) as required. O
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4.3. Nonvanishing. In this section we sketch the proof that the theta lift of a nonzero cusp form
on H(A) is nonzero. The argument closely follows an argument of Piatetski-Shapiro [Pia83].

Proposition 4.3. Let 7 be an irreducible cuspidal automorphic representation of H(A). The theta
lift 6(r,) of T to G(A) is non-zero.

Before we prove Proposition 4.3, we first state a lemma, whose proof is similar to that of [Pia83,
Lemma 5.1] and we omit it.

Lemma 4.4. Let vg € Vo(Q) and zy, be as in Proposition 4.2. If W : H(A) — C is a continuous
function satisfying

W(nh) = X—(vo,v())(n)w(h)v n € Ny(A),h € H(A),

and for any Schwartz function ¢ € S((b1 @ W)(A)) ® S((Vo ® wy)(A)), we have

/ W (h) (s (h) ) (20 ) = O
Ny (A)\H(A)

then W = 0.

Proof of Proposition 4.3. Let f be a non-zero cusp form on H(A). Since f is necessarily generic,
there exists a vector vg € V¢ such that the x_,, ., th Fourier coefficient of f is non-zero. Moreover,

f—(vo,v())(nh) = X—{(vo,v0) (n)f—<vo,vo>(h)a ne NY(A)a h e H(A)a

and so Lemma 4.4 implies that there exists ¢ € S((by ® W)(A)) @ S((Vo ® w4 )(A)) such that

/ = 0 (D)0 (0)6) (20 ) £ .
Ny (A)\H(A)
Now we use (4.11) to conclude that 8(f, ¢)y, (1) # 0, as desired. O

4.4. The theta lifts of Poincaré Series. Let t € Q, and let p; : H(A) — C be a function which

satisfies p(n(x)g) = Y(tx)u(g) for n(z) = <1 L_f) € Ny(A). Associated to p, one can define a

Poincaré series
P(hip) = Y mlyh),
~v€ENy(Q)\H(Q)

which is an automorphic function when this sum converges absolutely. The following result com-
putes the theta lift P(h; ;).

Lemma 4.5. Suppose that the sum defining P(h; pi) converges absolutely to a cuspidal automorphic
form on H(A). Let ¢ € S(X(A)). Suppose that

!M h)[|w(g, h)o(v ® wy)|dh < occ. (4.16)
Then we have
O(P (5 e); 0)(g) = / we(h)w(g, h)p(v @ wy)dh. (4.17)
Ny (A)\H(A)

vEV(Q):(v,v)=—t
18



Proof. Since P(h; ) is cuspidal, the integral defining the #-lift 6(P(-; ut); ¢)(g) converges abso-
lutely. Then

O(P (-5 pie); /0 9, h; ) P(h; py)dh
(H]

= / 0(g, h; ¢) e (h)dh

Ny (Q\H(A)
= [t [ ognhsoypiinydndn.
Ny (A)\H(A) [Ny]

The finiteness assumption guarantees that the above formal computations are justified. Notice that

for n =n(x) = (1 ‘f) € Ny (A), we have
0(g,n(x)h;d) = Y wlg,n(@h)dvewy) = Y dp((v,v)x)w(g,h)dv e w,).

veV(Q) veV(Q)
Thus

[ tanmopmin= 3 wlghewe w,).

Ny] vEV(Q):(v,v)=—t

The result follows. O

5. THETA LIFTS OF HOLOMORPHIC POINCARE SERIES TO G

In this section we define the adelic versions of the quaternionic modular (s, ¢g) of Theorem
1.3. These modular forms are obtained as the theta lifts of anti-holomorphic modular forms on
U(1,1) with a special choice of archimedean test data. This choice of test data is explicitly defined
in 5.2. In subsection 5.3 we make an archimedean computation of (£, ¢o) in the case when &;
corresponds to an holomorphic Poincaré series on U(1,1). Based on these computations we are
able to deduce Theorem 1.3 modulo the statement that (&, ¢o) satisfies the differential equations
D}H(g #,¢0) = 0. This is established in Section 6 as Theorem 6.1.

5.1. Holomorphic Modular Forms on H. Recall that H = U(W) denotes the quasi-split uni-
tary group attached to the skew Hermitian space W = E-span{w,,w_}. We write elements of H
as matrices relative to the basis {wy,w_} with the convention that H acts on the right of W. Let
K!_ be a the maximal compact subgroup of H(R) with an isomorphism

K!_ = {z (Cf’sa Sm9> c2eChpe [0,27r)}.

sinf cos@

Let H11 = {z € C:Im(z) > 0} be the hermitian upper half space. Then h = <(CI Z) € H(R) acts

on z € Hi by the usual linear fractional transformation. The automorphy factor associated to

h = (ch Z) € HR) and z € H; 3 is

j(h,z) =cz+d.
Given f a cuspidal automorphic form on H(A), we say that f is associated to a holomorphic modular

form of weight k if for each hg, € H(Agy), the function hee — j(hoo, i) f(hoohsn) descends to a
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holomorphic function on #; ;. It follows that if f is associated to a holomorphic modular form on
H, then the Fourier expansion of f takes the form

Flnhoc) = 3 ap(t) (hin)i (o i)~ Ne2riti)
t>0

where ay(t) : H(Agn) — C is specific locally constant function depending on f and ¢t. By a result of
Shimura, the Fourier coefficients as(t) endow the space of modular forms on H with an algebraic
structure. More precisely, if Kg, < H(Agy) is a level subgroup, then there exists a number field
L/Q such that the space of weight £ modular forms on H of level K; admits a basis consisting of
forms f for which the Fourier coefficients af(t) takes values in L [Shi75; Shi78; Har86].

5.2. Archimedean Test Data. Our current goal is to use Lemma 4.5 as a means of constructing
quaternionic modular forms on G. Notice that if the test function ¢ and the inducing section u are
factorizable, then the integral appearing inside the summand of expression (4.17) is Eulerian. In
this section, we describe a choice of test data ¢oo € S(X(R)) for which we can explicitly compute
the archimedean component of this Eulerian integral. To begin, let (¢,n) be a pair of integers
satisfying either £ > n or 1 < "5~ 1| < ¢ < n. Recall the orthogonal decomposition V' = V2 eV,
given in (2.2). For v € V, denote Hv|| = /(v,v - 1) (recall that ¢ is the element in K, which acts as
identity on V" and acts as negative identity on V") and let (v, w) := (v,w-1) be the positive definite
hermitian form on V. Recall {uj,us} is an orthonormal basis of V,". As a U(V,")-representation,

VT ~ VT -1
Vir =V, ®detU(V2+)

Py : Sym‘V,t @ Symﬁ?Jr ~ Sym‘V," ® Sym‘V," ® det I_vaﬂ -V,
2
which is equivariant under K = U(V,") x U(V,;"). Here the last map is given by multiplication.
Denote by pr, the projection from V' to V,', which is equivariant under K. Note that if v € V
with (v,v) > 0, then ||pry(v)|| > 0. For v € V, define

Qe: V= Vi, Qu(v) == Pg(pry(v)’ & pry(v)"),

via the map ¢ given by %y — u1, U1 — —us. We thus obtain a map

and set
boo(V @ W) 1= Qu(v)e 27V, (5.1)

cos@ —sinf

Lemma 5.1. For kg = <sin9 cos 6

> € K., we have

Woo (Kg) boo (v @ w4) = j(ki, 1) 2 oo (v @ wi). (5.2)

Proof. To prove the lemma, it suffices to compute the differential of the action of K/ on ¢oo(v@w4).
The proof is standard (see for example [LV80, Lemma 2.5.14 and Proposition 2.5.15] for a proof of
the analogous statement in the case of SLa). We omit the details. u

5.3. Theta lifts of Poincaré series to . Fix t € Q- and let £ and n be as in subsection 5.2.
We are ready to explicate the archimedean integral appearing in the theta lifts of Poincaré series.
As stated in Theorem 1.3, we intend to theta lift weight N = 2¢ 4 2 — n anti-holomorphic modular
forms on H to obtain weight ¢ quaternionic modular forms on G. As such, we take the archimedean
component of the inducing section in the Poincaré series to be

P—t.0o(h) = det(h)E+25(h, i)~ Ne2mit(i-h), (5.3)

Suppose v € V' with (v,v) =t. With ¢ as defined in subsection 5.2 and pi_;~ as above, Lemma
4.17 outputs the archimedean integral

Le(oit) = [ o0 ()0 (9, 1) (0 @ 4 ). (5.4)
(RN\H(R)
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Proposition 5.2. Let v be in V with (v,v) =t > 0. Then there exists C € C* (independent of v)
such that

Io(v;t) = C - Byy(9)
Qe(vg)

~ [lpra(vg) |42

Proof. Without loss of generality we may assume g = 1. Then writing dp,, for the modulus character
of Py(R) = Ny(R)My(R), the Iwasawa decomposition of H(R) implies

where By ,(g)

2
Lo(v;t) = / / 55 () 1t o0 (Mg e (M) 0 (0 @ 0. ).
My (R) Jo

cosf —sinb

For m € My(R) and ky = <sin9 cos 0

> we have 1y oo (mkg) = j(ko, 7)™ p1—t.00(m). So by (5.2)

we conclude

Io(vit) =2m /M - 513;(m)u_t7m(m)wm(m)¢oo(v ® wy)dm.

We write m € My(R) as m = <a al) with a € C*. Using the archimedean analogue of the first

formula of (4.1), we compute that

n+2
a a 2n —27|al?||v||?
o (7 51) ) omtv ) = (&) (aP)'E e 2ol 1P Qo)
= an+2’a|2£€_27r|a|2H’UHQQZ(U)‘

On the other hand, by the construction of p_;~ we get that

a +2 . )
M—t 00 <<a a_1>) = (:> alV e2mi(v,v)|al?i — a€+2aNf€f26727r|a|2<'u,v>'

a

Noticing dp “ = |a|? and N = 2/ 4 2 — n, it follows that
¥ -1

Io(vst) = Qu(v) - 27r/ |a\4Z+26_2ﬂ‘“|2(<”’”>+”v”2)dxa.

Cx

Finally we make a change of variable a — m to arrive at

Qe(v) / 4042 —4rlal?
Io(vit) = —St 2 mlal g% .
(i) = e 2T el a

The integral [ |a|#+2e47lal* 4% g is non-zero and independent of v, thus completing the proof. [

Before applying Proposition 5.2 to the study of theta lifts of Poincaré series to G, we must verify
that the convergence condition (4.16) is satisfied. This is achieved in the Lemma below.

H(Aﬁn)

Lemma 5.3. Suppose ¢an € S(X(Agn)), and pi_¢n € IndNy(Aﬁn)(X_t’ﬁn). Set pi—t = it 00 * —t fin-

Then for £ > n+1 the sum

)y

|t (R)||w(g, B) ($sin @ Poo) (v @ w)dh
veV(Q) )

/Ny((@)\H(A

1s finite.
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Proof. By the same manipulations as in the proof of Proposition 5.2, the quantity in the lemma is
bounded by a constant times

ZHQZ H/ ‘a|4é+2 —27|al?(t+]||v]? )d
vEA

for some lattice A in V(R). Note that ¢ is fixed, and both ¢ and ||v|| are non-negative. Also note
that for any fixed a € R+, there exists a positive constant C, depending only on « such that

et <O for any b > 0.
Then

/ |a|4€+2€—27r\a|2(t+|\v|\2)dxa _ / |a‘4é+2e—27r\a|2te—27r|a|2||v||2d><a
Cx Cx
< / |a‘42+2€—27r\a|2tca(27T|a|2||,U”2)—ad><a
(CX

1
— Ca(zﬂ,)fa . W [CX ’a‘4€+272a6727r|a|2td><a.

In order that the integral in the last row converges, we need to take o with
4 +2—-20>0, (5.5)

which is due to the convergence range of the integral expression of the Gamma function. On the
other hand, we must also check the convergence of

e >0

vEA
Since
1Qe(v) I = || P (pra(v)® @ pra(@) )| = [|lpra(v)l* < [lo]|*,
the sum (5.6) is bounded by
Z ] |2a Toll2a—2¢" (5.7)

vEA
In order that the sum (5.7) converges, we need to take a with

a—0>n+2, (5.8)

which is due to the convergence range of the Epstein zeta function attached to the positive definite
hermitian form || - ||. Combining (5.5) and (5.8), it follows that when ¢ > n + 1, the sum in the
lemma is convergent. O

Applying Lemma 4.5 we have that 0(P(+; u—¢); ¢an @ doo) is a non-zero constant times

Z

veEV(Q): (v,v)

/ it (1) (giim, B)tin (v © w4 ) - B (goo).
NY (Aﬁn)\H(Aﬁn)

In Theorem 6.1 we will show that DEEBM = 0. As the above summation is absolutely conver-
gent, Theorem 6.1 implies that DEEQ(P(-; f—t); Pfin @ doo) = 0. Hence if £ > n, then the condition
DEEH(P(-; f—t); Pin @ boo) = 0 means that O(P(+; pu—t); Pan ® Poo) generates an automorphic repre-
sentation which is quaternionic discrete series at infinity. It is also true that O(P(-; p—¢); din @ Poo)
is square integrable (see [GeRo91, Proposition 3.4.1]) and so by [Wal84, Theorem 4.3], Theorem 6.1
implies that O(P(-; p—¢); ¢ain @ ¢oo) is cuspidal. The Poincaré series span the space of cusp forms
on H. So combining Proposition 4.3 with the argument above, we obtain a proof of Theorem 1.3

which is conditional on Theorem 6.1. The precise statement is as follows.
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Theorem 5.4. Let £ > n and suppose f is the automorphic function on H(A) corresponding to a
weight N = 20+ 2 —n holomorphic modular form. Assume the central character € = [, v of f

satisfies £00(2) = 2" 2. Then there exists ¢gn € S(X(Aqn)) such that 0(f, pgn @ ¢Oo)7is a non-zero
cuspidal weight ¢ quaternionic modular form on G. Moreover, the constant term 0(f, ¢sn ® doo)z
s non-zero with Fourier expansion

6(?7 ¢/®¢00)Z(g) = Z Cr- af(T§ ¢ﬁn§gﬁn)W—iT(goo)-
TEVo(Q): (T,T)>0
Here the coefficients Cp € C and

af(T; Pan; gfin) = / w(Yfin, 1) Ppin (b1 @ w— + T @ wy )az(—(T, T))(h)dh. (5.9)
Ny (Afn)\H(Agp)

6. ALGEBRAICITY IN THE FOURIER EXPANSIONS ON G

In this section we sketch the proof of Theorem 6.1, showing that By, is annihilated by the
operators Df As a byproduct of Theorems 3.4 and 6.1, we obtain an integral representation
for the generalized Whittaker function Wy (see (6.6)). In Theorem 6.7, we apply this integral
representation to show that if f is a modular form on U(1, 1) such that all of the Fourier coefficients
of f are algebraic numbers, then ¢g, may be chosen so that 0(f, ¢’ ® ¢uo)z is non-zero and Cr -
ar(T; ¢ain; gan) € Q for all T' € Vo(Q) and g € G(Agy).

6.1. A Quaternionic Function. For v € V with (v,v) > 0, recall the function By, : H(R) — V,

. Qe(vg)
Beel®) 3= o, g 77

The following result is a close analogue of [Pol21, Theorem 3.3.1].
Theorem 6.1. Suppose that £ > 2. Then the function By,(g) is quaternionic, i.e., Déthjv(g) =0.

To prove Theorem 6.1, we begin with the following general formula describing the action of g on
By . Given X € go, which may be viewed as an endomorphism of V', we write X (v) to denote the
application of the endomorphism X to the vector v. So

d
X(v) = o7 (v - exp(tX))]i=o0-
Given v € V, consider the function z : G — V defined by g — v - g. Then X € gg acts on z under
the right regular action X - z = —X(z). This formula remains valid for X € g. We now give a

preliminary lemma, which is a version of [Pol21, Lemma 3.3.2]. The proof is a direct computation.

Lemma 6.2. Let g € G and X = X1 +iXo € g with X1, X2 € go. We define X* = X; — iXs.

Set z = v-g, p = pry(z) and p = 0(pry(z)). Similarly we set X(p) = pro(X(z)) and X (p) =

d(pry(X(2))) so that X -p=—X(p) and X -p=—X(p). Then

(404 2)((X(p), p) + (p, X*(p)))pP — 20(X (p)B + X (D)D) Ip|I?)

- 2||pl|e+ '
Recall that the set {[u; ® v;]¥: 1 <1 < 2,1 < j < n}, defined in (2.9), is a basis for p*. To

simplify notation, we denote X; = [u; ® vj]i. Then for z € V', we have

. (z,vj)uy Jif @ = +, o/ —(u;, 2)vj, if @ =+,

—(z,u)v; ,if @ = —, (v, 2)uy, if e =—.

X - B€,v (g)
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Moreover, by Lemma 6.2, we have

PPN ((40+ 2) (X5 (p), p)pP — 20X (0)PIp]1?)
2||p||4et+4

X;]r ’ Bﬁ,v( ) -

and

PP N4+ 2) (p, X5 (p))pP — 20X5; (P)pllp|I?)
2[|p|| 46+ '

For each pair (i,7) with 1 <i <21 <j <n, we have K —equivariant contractions

—\. 2y + -1 -
(-, Xi;): Sym™V, ®detU(V2+)—>(V ® det ( ))XV

fur, u2) = Oy, f(u1,u2) Xuj

Xz; : Bé,v(g) =

and

+y. 27+ -1
(- X35): Sym®V, ®detU(V2) ( ))

f(ul7u2) — (_1) ui+1f(ula U2) Ko Uj‘
Here the index i is interpreted modulo 2. Then X{; “Byu(g) ® X;; contracts to

(Vsh @det - YRV,

Y/ pﬂ QPZ 1
W((%Jﬂ) p(X35 (), p) (PP, X55) — 2(6_1)”pH2X;(p)<mXi;>_2Hp”2p<X$(mei;>)’

and the element X;; - By,(g) ® X{; contracts to

Y pé 1pé 2
W((‘MJF?)?(ZLX () (0P, X35) — 2(¢ = 1)Ipl1*(X5; () (w0, X35) — 2[plI*B(X; o, X; >)).

Thus Theorem 6.1 follows from Proposition 6.3 below, whose proof is directly analogous to the
proof of [Pol21, Proposition 3.3.3].

Proposition 6.3. Let the notation be as above. For any 1 < j < n, we have

2
> (44 2)p(X 5 (0), p) 8, X5) — 2(¢ = DIpl2XS ) (08, X5) = 20pl*p(X55 (0B, X5) ) = 0
i=1
(6.1)
and
2
> (48 + 2)p(p, X5 (0) 08, X5) — 2(¢ = DIl (B) b, X5) — 20plPp(X; (B)p, X)) ) = 0.
i=1
(6.2)
6.2. The Fourier Transform of A;. Let vy € Vj be such that (vg,vp) > 0. In this subsection,
we study a Fourier transform of the function
Aog) — Qi) Prlory(u) © pry(r0)’
[[pra (vo) [|46+2 [[pra (vo) ||+
Recall the family of constants {C7r: T € V,(Q),(T,T) > 0} introduced in Theorem 5.4. Our
results in this section will be used to show that if 71,75 € Vo(Q) are such that (71,71) > 0 and
(T»,T5) > 0, then Cy, = Cp,. Recall the character 7y, 00 from (4.5). The Fourier transform in
question is defined as

FunAulg) = / Ag(v0 - ng) g me(m)dn. (6.3)
Stab (v0)\IV
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The right cosets of Staby(vg) in N / are represented by the elements of the one parameter subgroup
C — N, z — exp(b) ® Zvg — zvg @ b1). We have that vy - exp(b; ® Zvg — zvg ® b1) = v — (vo, 200)b1.
It follows that F,,A¢(1) is a non-zero constant multiple of the integral

J(vg, £) := /((:Ag(zbl + 00)VE 00 (2)dz,

where dz denotes the double Lebesgue measure on C and g oo(2) = thoo(5tr(2)). Note that the
quantity Ag(zb; + vp) is insensitive to replacing vy with its projection onto the positive definite
complex two plane V,". Moreover, since (vg,vo) > 0, there exists a unique value a € C* such that
the projection of vy onto V5 is given by pry(vg) = @ug. Hence, rewriting .J(@us, £) using the change
of variable z — @z, and applying the homogeneity properties of Ay, one obtains

T (@us, €) = ’;% /C Ag(zby + us)Pp e (@2)d-=. (6.4)

The above expression is not identically 0 as a function of @ since it is a Fourier transform integral.
Hence there exists a’ € C such that J(a'ug, £) # 0.

Lemma 6.4. Suppose £ > 1, a € C*, and g € G. Then the integral

/(:Ag((zbl + u2)9)VE 00 (az)dz (6.5)

converges absolutely.

Proof. To prove the absolute convergence of (6.5), it suffices to consider the case g = 1. Since
1Qe(w)| = || Pic (pra(v)* @ pry(@))|| = ||pra(v)[|*, we have

1
Ag((zby + = .
[4e(b1 + w2l = o = T

Taking g = 1 we have that

2 2
z
”pI“Q(Zbl + UQ)H = Z(Z’bl + ’LL2,’LL¢>U¢ = ’2‘ + 1.
i=1
Hence
- 1
/(C HA[((Zbl + UQ))waoo(aZ)H dZ = /C Wdz

This proves the absolute convergence of (6.5) for ¢ = 1, and hence for general g. ]

Lemma 6.4 implies that (6.3) converges absolutely. Hence by Theorem 6.1, the function defined
by (6.3) is annihilated by the differential operators D} and D, . Moreover, the integral (6.3)
is of moderate growth and satisfies the same equivariance properties as the 7, ~-th generalized
Whittaker function W_;,, (see subsection 3.2). Hence by the multiplicity at most one statement
in Theorem 3.4, there exists a constant C,, ¢ € C (see (4.6)) such that

/C Ad((2b1 + v0)9) BB () = Cog ¢ - Wosnn (9). (6.:6)

Moreover, by the discussion preceding Lemma 6.4, we may fix a choice of the vector @’ € C so that
Corus e 7 0. In fact, we have the following result.

Lemma 6.5. The constant Cy, ¢ # 0, and for all vg € V' such that (v, vo) > 0,

/(CAK((Zbl + 'UO)g)wE,oo(z)dz = Cuz,ZW—ivo (g) (6'7)
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Proof. Let a € C* and set M = diag(a, In,a" ') € G. For ease of notation, denote n(z) =
exp(by ® Zuz — zug @ by) € G for z € C, so that ug - n(z) = ug — zb;. Then

/ Ag((#hy + us) M) b c(2)dz = / Aglus - MM~ n(=2)M)ibp e (2)d2
C C

e /C Ay(uz - n(~2)) g (@z)dz.

Combining this with (6.4), we obtain

1
J(aug, 0) = WM/(;AZ((ZIH + u2) M) g o (2)dz.
Therefore, the above manipulation, together with (6.6) gives J(ausg, £) = |a|=272C,, ¢JW_juy (M).
Moreover, by definition of J(aus, ), (6.6) implies J(aug, ) = Cayy ¢W—iau,(1). So
Caug tW—iauy (1) = |a’_2£_20u2,€W7iUQ (M). (6.8)
Applying Theorem 3.4 we calculate

W—iu2 M) = 26+2 <|Bmu2(1’1)
0 —gv:ge’a‘ Biaus (1,1)

Hence, W_iqu, (1) = |a|72"?W_;,,,(M), and together with (6.8), this implies that Cyy, ¢ = Cuy -
In particular, Cuyy ¢ = Coryyye for all a € C*, and thus Cy, ¢ is non-zero. Since Ay(zby + vg) is
insensitive to replacing vy by pra(vg), the equality (6.7) follows from (6.6). O

) Ko (8- taun (L 1)) = [aP Wi (1.

Proposition 6.6. With notation as in Theorem 5.4, Ct is non-zero and independent of T.

Proof. By Proposition 4.11, we have
Cr = Weir(1)™! / oo (1, h) Fs oo () (22 it 0 () .
Ny (R)\H(R)
Applying Lemma 5.1 and the definition of the action of ws on S(X(R)), we have woo (1, k) FU 00 (Poo) =

j(k:g,i)_N}"U,oo((ﬁoo) for ky = <0059 —sinf

/ . .
sinfd  cosd ) € K/ ,. Thus, by the Iwasawa decomposition

it
H(R) = Ny(R)My(R)K/, and the fact that My(R) N K/ = {<e e“) it e R}, we have

Cr =2nW_ir(1)~! /M - 55;(m)woo(m)}"U’oo((ﬁoo)(zT)u_tpo(m)dm.

By writing m € My(R) as m = m(a) = @ a_1> with a € C*, we use the archimedean analogues

of (4.7) and (4.4) to compute that
n+2
oo (( )) F o) (1) = (H> (1a2)% Fu ool(doc)(by @ T 10 + T @ )
= an+2\a’_2/ Poo (b2 ® 2wy + aT @ wy)Yp,co(za™ " )dz
C

_ an+2/ Doo(b2 @ azwy + aT @ Wi )PE eo(2)dz.
C

Thus, we obtain that Cr is equal to

W (1) /C ol m(a)a? [C boo(by ® a2y + AT @ w3 105 oo (2) 211t o0 (@) )" .
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This double integral is absolutely convergent. Changing the order of integration gives

Cr=W_ir(1)™! / 21 [ Opr(m(a))a" P oo (b © azwy + aT @ wy )it c0(m(a))d* g o(2)dz
c Jox

Wt [ [ woo(1, B oo (b2 ® 2104 + T © W Yt oo () dhip oo ()d2
Ny(R)\H(R)

The inner integral of the last formula is equal to the integral I, (zby + T;t) of (5.4) evaluated at
g = 1. Hence by Proposition 5.2, there exists a constant C' € C* (independent of T) such that

Cr=CW_ir(1 / Ag(zby + T)hp oo(2)dz

Applying Lemma 6.5 we conclude Cr = CW_;p(1) 71 Cyy V_ir(1) = C-Cyypp # 0 as required. [
6.3. Algebraicity of Fourier Coefficients. We may now complete the proof of Theorem 1.4.

Theorem 6.7. Suppose £ > n. Let f be the automorphic function on H(A) associated to a weight
N = 20+ 2 — n cuspidal holomorphic modular form f on Hi1. Assume f has central character
€ = [[ <0 €0 Where exo(2) = "2, and suppose that the functions as(t): H(Ag,) — C are valued
in a single algebraic extension L/Q for all t > 0. Then there exists ¢g, € S(X(Agyn)) such that
O(f, oin ® do) is a non-zero quaternionic cusp form on G with Fourier coefficients in L(ji~). Here
L(pso)/L denotes the extension obtained by adjoining all roots of unity to L.

Proof. Recall that the non-degenerate Fourier coefficients of 0(f, ¢) are given by (5.9). It suffices
to show that the integral in (5.9) is a finite sum. As functions of h € H(Agqy), both w(h)p(by @
w_ 4+ vg ® wy) and af((vo,vo))(h) are right invariant under a compact open subgroup Uj of the
maximal compact open subgroup H( ) of H(Agy,). Using the Iwasawa decomposition, we obtain

a(v: & ) = / / ) dan (01 @ -+ 00wy (oo, o) RM)dkdh. g o

My (Afin) H(Z)

Let {ki, - ,km} be a set of representatives of Uy\H(Z). Then (6.9) becomes

a(vo; ¢; f) = ZVOI o) / w(h)w(k;)dn(br ® w— 4+ vo ® w)ag({vo, vo))(hk;)dh
My (Afin)

Thus a(vo; ¢; f) is a finite sum of integrals of the form

w(h)dan (b1 ® w— + v ® wy)ar((vo,vo))(h)dh. (6.10)
My (Agay)

It suffices to show that (6.10) is a finite sum.
Write h € My(Agy,) as h = diag(a,a ') with a € AE,ﬁn' Let Unmy, = U N My (Ag,). We claim
that the set of diag(a,a ') with

a 5 __
N << a—1>> Pfin(b1 @ w_ +v9 @ wy) = x(a)**"[alf ppn (b1 @ w_a ' +v0a ® wy) # 0
has a finite number of Ung, cosets. Without loss of generality we may assume that
¢ﬁn(b1 X w_a * + voa @ w+) = ¢ (bl & w_a_1)¢2(vga & w+),
where ¢; and ¢9 are characteristic functions on (by ® Y)(Ag,) and (Vo ® w4 ) (Agin) respectively.

These conditions on ¢1 and ¢2 imply that there is some ¢t € GL1(Ag, ﬁn)ﬂ(’)E such thata—! € ¢~ 1(’)E

and a € t~ 1(9E, where (’)E is the maximal compact subgroup of Agg,. Hence, there is a finite
number of Upp, cosets. This completes the proof. O
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