On the Fourier-Jacobi Expansion of Quaternionic Modular Forms on Spin(8)

Finn McGlade

UC San Diego

May 2025, San Diego

Outline

- 1 Siegel Modular Forms and Zagier's Theorem
- 2 Quaternionic Modular Forms on Spin(8)
- $\fbox{3}$ The Fourier-Jacobi Expansion on Spin(8)

Contents

- Siegel Modular Forms and Zagier's Theorem

Integral Binary Quadratic Forms

• Let $(\operatorname{Sym}^2\mathbb{Z}^2)^*$ denote the set of integral binary quadratic forms

$$T = nx^2 + rxy + my^2, \qquad n, r, m \in \mathbb{Z}.$$

• Let $(\operatorname{Sym}^2 \mathbb{Z}^2)^*$ denote the set of integral binary quadratic forms

$$T = nx^2 + rxy + my^2, \qquad n, r, m \in \mathbb{Z}.$$

• The group $SL_2(\mathbb{Z})$ acts on $(Sym^2 \mathbb{Z}^2)^*$ by linear substitution

$$T(x,y) * \begin{pmatrix} a & b \\ c & d \end{pmatrix} = T(ax + by, cx + dy), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

preserving the quadratic invariant $det(T) := nm - \frac{r^2}{4}$.

Integral Binary Quadratic Forms

• Let $(\operatorname{Sym}^2 \mathbb{Z}^2)^*$ denote the set of integral binary quadratic forms

$$T = nx^2 + rxy + my^2, \qquad n, r, m \in \mathbb{Z}.$$

• The group $SL_2(\mathbb{Z})$ acts on $(Sym^2\mathbb{Z}^2)^*$ by linear substitution

$$T(x,y) * \begin{pmatrix} a & b \\ c & d \end{pmatrix} = T(ax + by, cx + dy), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

preserving the quadratic invariant $\det(T) := nm - \frac{r^2}{4}$.

• Equivalently, $(\operatorname{Sym}^2 \mathbb{Z}^2)^*$ consists of 1/2-integral symmetric matrices

$$T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix}$$

with $\gamma \in SL_2(\mathbb{Z})$ acting by $T * \gamma = \gamma^t T \gamma$.

Binary Quadratic Forms and the Siegel Parabolic Ps

The symplectic group

$$\operatorname{Sp}_4 = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{SL}_4 \colon AB^t = BA^t, CD^t = DC^t, AD^t - BC^t = 1 \right\}$$

Binary Quadratic Forms and the Siegel Parabolic Ps

The symplectic group

$$\operatorname{Sp}_{4} = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{SL}_{4} \colon AB^{t} = BA^{t}, CD^{t} = DC^{t}, AD^{t} - BC^{t} = 1 \right\}$$

• The Siegel parabolic $P_s = M_s N_s \leqslant \mathrm{Sp}_4$ has unipotent radical

$$N_s = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2 \quad \text{and} \quad B^t = B
ight\} \subseteq \mathrm{Sp}_4.$$

and Levi factor $M_s \simeq GL_2$.

Binary Quadratic Forms and the Siegel Parabolic Ps

The symplectic group

$$\operatorname{Sp}_{4} = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{SL}_{4} \colon AB^{t} = BA^{t}, CD^{t} = DC^{t}, AD^{t} - BC^{t} = 1 \right\}$$

• The Siegel parabolic $P_s = M_s N_s \leq \mathrm{Sp}_4$ has unipotent radical

$$N_s = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2 \quad \text{and} \quad B^t = B
ight\} \subseteq \operatorname{Sp}_4.$$

and Levi factor $M_s \simeq GL_2$.

• Then as a **module** over $SL_2(\mathbb{Z}) = M_s^{der}(\mathbb{Z})$,

$$\operatorname{Hom}(N_s(\mathbb{Z})\backslash N_s(\mathbb{R}),\mathbb{C}^{\times})\simeq$$

Binary Quadratic Forms and the Siegel Parabolic P.

The symplectic group

$$\operatorname{Sp}_{4} = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{SL}_{4} \colon AB^{t} = BA^{t}, CD^{t} = DC^{t}, AD^{t} - BC^{t} = 1 \right\}$$

• The Siegel parabolic $P_s = M_s N_s \leq \mathrm{Sp}_4$ has unipotent radical

$$N_s = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2 \quad \text{and} \quad B^t = B
ight\} \subseteq \operatorname{Sp}_4.$$

and Levi factor $M_s \simeq GL_2$.

• Then as a **module** over $SL_2(\mathbb{Z}) = M_s^{der}(\mathbb{Z})$,

$$\operatorname{Hom}(N_s(\mathbb{Z})\backslash N_s(\mathbb{R}), \mathbb{C}^{\times}) \simeq (\operatorname{Sym}^2 \mathbb{Z}^2)^*$$

via the map sending $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$ to the **character**

$$\chi_T \colon N_s(\mathbb{Z}) \backslash N_s(\mathbb{R}) \to \mathbb{C}^{\times}, \qquad \chi_T\left(\begin{pmatrix} I & B \\ 0 & I \end{pmatrix}\right) = \exp(2\pi i \operatorname{tr}(BT)).$$

Siegel Modular Forms

The symplectic group $\operatorname{Sp}_4(\mathbb{R})$ acts on the **complex three-fold**

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

via the biholomorphic transformations $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$.

Siegel Modular Forms

The symplectic group $Sp_4(\mathbb{R})$ acts on the **complex three-fold**

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

via the biholomorphic transformations $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$.

Definition (Siegel Modular Forms)

Let $\ell \in \mathbb{Z}_{\geqslant 0}$ and write $M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ for the space of holomorphic functions

$$F: \mathcal{H}_2 \to \mathbb{C}$$

such that $F(\gamma \cdot Z) = \det(CZ + D)^\ell F(Z) \; \forall \; \gamma = \left(egin{array}{c} A & B \\ C & D \end{array}
ight) \in \mathrm{Sp}_4(\mathbb{Z}) \; \mathrm{and} \; Z \in \mathcal{H}_2.$

Siegel Modular Forms

The symplectic group $\operatorname{Sp}_4(\mathbb{R})$ acts on the **complex three-fold**

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

via the biholomorphic transformations $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$.

Definition (Siegel Modular Forms)

Let $\ell \in \mathbb{Z}_{\geqslant 0}$ and write $M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ for the space of holomorphic functions

$$F: \mathcal{H}_2 \to \mathbb{C}$$

such that $F(\gamma \cdot Z) = \det(CZ + D)^\ell F(Z) \; \forall \; \gamma = \left(egin{array}{c} A & B \\ C & D \end{array}
ight) \in \mathrm{Sp}_4(\mathbb{Z}) \; \mathrm{and} \; Z \in \mathcal{H}_2.$

• If $\gamma = \begin{pmatrix} I & B \\ 0 & I \end{pmatrix}$, the transformation law of $F \in M_\ell(\mathrm{Sp}_4(\mathbb{Z}))$ implies

$$F(Z+B) = F(Z)$$

for all $Z\in\mathcal{H}_2$ and $B\in M_2(\mathbb{Z})$ such that $B^t=B_{\square}$

The Fourier Expansion of Siegel Modular Forms

Fourier expanding $F \in M_{\ell}(\mathrm{Sp}_{4}(\mathbb{Z}))$ in characters of $N_{s}(\mathbb{Z}) \backslash N_{s}(\mathbb{R})$ gives

$$F(Z) = \sum_{T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^* \colon \det(T) \geqslant 0} A_F[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

The Fourier Expansion of Siegel Modular Forms

Fourier expanding $F \in M_{\ell}(\operatorname{Sp}_{4}(\mathbb{Z}))$ in characters of $N_{s}(\mathbb{Z}) \backslash N_{s}(\mathbb{R})$ gives

$$F(Z) = \sum_{T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^* \colon \det(T) \geqslant 0} A_F[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

• Here the Fourier Coefficient $A_F[T] \in \mathbb{C}$ is given by

$$A_F[T] = \exp(2\pi \operatorname{tr}(T)) \int_{N_s(\mathbb{Z}) \setminus N_s(\mathbb{R})} F(n \cdot iI_2) \chi_T(n)^{-1} dn. \tag{1}$$

The Fourier Expansion of Siegel Modular Forms

Fourier expanding $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ in characters of $N_s(\mathbb{Z}) \backslash N_s(\mathbb{R})$ gives

$$F(Z) = \sum_{T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^* \colon \det(T) \geqslant 0} A_F[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

• Here the Fourier Coefficient $A_F[T] \in \mathbb{C}$ is given by

$$A_F[T] = \exp(2\pi \operatorname{tr}(T)) \int_{N_s(\mathbb{Z}) \setminus N_s(\mathbb{R})} F(n \cdot iI_2) \chi_T(n)^{-1} dn. \tag{1}$$

• Since $M_s^{\text{der}}(\mathbb{Z})$ normalizes $N_s(\mathbb{Z})$, changing variables in (1) gives

$$A_F[T * \gamma] = A_F[T]$$

for all $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$ and $\gamma \in M_{\mathfrak{s}}^{\operatorname{der}}(\mathbb{Z}) = \operatorname{SL}_2(\mathbb{Z})$.

Zagier's Theorem

- Say $T = ax^2 + bxy + cy^2$ is **primitive** if gcd(a, b, c) = 1.
- In his work on the Saito-Kurokawa conjecture, Zagier proves:

• Say $T = ax^2 + bxy + cy^2$ is **primitive** if gcd(a, b, c) = 1.

• In his work on the Saito-Kurokawa conjecture, Zagier proves:

Theorem (Zagier 1980)

Suppose $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ with $\ell \in \mathbb{Z}_{>0}$ and Fourier expansion

$$F(Z) = \sum_{T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^* : \det(T) \geqslant 0} A_F[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

If $A_F[T] = 0$ for all **primitive** $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$, then F = 0.

Zagier's Theorem

- Say $T = ax^2 + bxy + cy^2$ is **primitive** if gcd(a, b, c) = 1.
- In his work on the Saito-Kurokawa conjecture, Zagier proves:

Theorem (Zagier 1980)

Suppose $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ with $\ell \in \mathbb{Z}_{>0}$ and Fourier expansion

$$F(Z) = \sum_{T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^* : \det(T) \geqslant 0} A_F[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

If $A_F[T] = 0$ for all **primitive** $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$, then F = 0.

Corollary

Suppose $F_1, F_2 \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$. Then $F_1 = F_2$ if and only

$$A_{F_1}[T] = A_{F_2}[T]$$

for all primitive integral binary quadratic forms $T \in (\text{Sym}^2 \mathbb{Z}^2)^*$.

Since the work of Zagier, the problem of **determining** a modular forms using Fourier coefficients has been studied more extensively:

Since the work of Zagier, the problem of **determining** a modular forms using Fourier coefficients has been studied more extensively:

• Gan-Gross-Savin (02') (A level one Quaternionic Hecke eigenform form on G_2 is zero iff its primitive Fourier coefficients are zero).

Since the work of Zagier, the problem of **determining** a modular forms using Fourier coefficients has been studied more extensively:

- Gan-Gross-Savin (02') (A level one Quaternionic Hecke eigenform form on G_2 is zero iff its primitive Fourier coefficients are zero).
- Saha (13') (A genus 2, level one, cuspidal Siegel modular form F is zero iff $A_F[T] = 0$ for all T such that $-4 \det(T)$ square-free & odd),

Since the work of Zagier, the problem of **determining** a modular forms using Fourier coefficients has been studied more extensively:

- Gan-Gross-Savin (02') (A level one Quaternionic Hecke eigenform form on G_2 is zero iff its primitive Fourier coefficients are zero).
- Saha (13') (A genus 2, level one, cuspidal Siegel modular form F is zero iff $A_F[T] = 0$ for all T such that $-4 \det(T)$ square-free & odd).
- Yamana (09') (Holomorphic modular forms on classical groups are determined by their primitive Fourier coefficients).

• Let $P_k = M_k N_k$ denote the Klingen type parabolic in Sp_4 .

- Let $P_k = M_k N_k$ denote the Klingen type parabolic in Sp_4 .
- Then N_k is **Heisenberg group** with center $Z_k = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\}$

- Let $P_k = M_k N_k$ denote the Klingen type parabolic in Sp_4 .
- Then N_k is **Heisenberg group** with center $Z_k = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$
- If $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$, then the **Fourier-Jacobi expansion** of F is

$$F\left(\begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix}\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}.$$

- Let $P_k = M_k N_k$ denote the Klingen type parabolic in Sp_4 .
- Then N_k is **Heisenberg group** with center $Z_k = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$
- If $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$, then the **Fourier-Jacobi expansion** of F is

$$F\left(\begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix}\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}.$$

Here $\phi_m \colon \mathcal{H}_1 \times \mathbb{C} \to \mathbb{C}$ is a **Jacobi form** of index $m \geqslant 0$ given by

$$\phi_m(\tau,z) = \int_0^1 F\left(\begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix}\right) e^{-2\pi i m \tau'} d\tau'.$$

- Let $P_k = M_k N_k$ denote the Klingen type parabolic in Sp_4 .
- Then N_k is **Heisenberg group** with center $Z_k = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$
- If $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$, then the **Fourier-Jacobi expansion** of F is

$$F\left(\begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix}\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}.$$

Here $\phi_m \colon \mathcal{H}_1 \times \mathbb{C} \to \mathbb{C}$ is a **Jacobi form** of index $m \geqslant 0$ given by

$$\phi_m(\tau,z) = \int_0^1 F\left(\begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix}\right) e^{-2\pi i m \tau'} d\tau'.$$

• For m > 0, ϕ_m inherits a **transformation law** with respect to

$$SL_2(\mathbb{Z}) \rtimes \mathbb{Z}^2 \curvearrowright \mathcal{H}_1 \times \mathbb{C}$$
.

Theorem (Zagier 80')

Suppose
$$\ell > 0$$
 & $A_F[T] = 0 \forall$ primitive $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$. Then $F = 0$.

• Suppose $F \neq 0$ satisfies the hypothesis of the theorem above.

Theorem (Zagier 80')

Suppose $\ell > 0$ & $A_F[T] = 0 \forall$ primitive $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$. Then F = 0.

• Suppose $F \neq 0$ satisfies the hypothesis of the theorem above. Then

$$F(Z) = \sum_{m \geqslant 0} \phi_m(\tau, z) e^{2\pi i \tau'}$$

and there exists $m_0 > 0$ such that $\phi_{m_0} \neq 0$.

Theorem (Zagier 80')

Suppose $\ell > 0$ & $A_F[T] = 0 \forall$ primitive $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$. Then F = 0.

• Suppose $F \neq 0$ satisfies the hypothesis of the theorem above. Then

$$F(Z) = \sum_{m \geqslant 0} \phi_m(\tau, z) e^{2\pi i \tau'}$$

and there exists $m_0 > 0$ such that $\phi_{m_0} \not\equiv 0$.

• Taylor expanding ϕ_{m_0} as $\phi_{m_0}(\tau, z) = \sum_{k=k_0}^{\infty} f_k(\tau) z^n$, the leading order term f_{k_0} is an **elliptic** modular form of **level one** and weight w > 0.

Theorem (Zagier 80')

Suppose $\ell > 0$ & $A_F[T] = 0 \forall$ primitive $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$. Then F = 0.

• Suppose $F \neq 0$ satisfies the hypothesis of the theorem above. Then

$$F(Z) = \sum_{m \geqslant 0} \phi_m(\tau, z) e^{2\pi i \tau'}$$

and there exists $m_0 > 0$ such that $\phi_{m_0} \neq 0$.

- Taylor expanding ϕ_{m_0} as $\phi_{m_0}(\tau,z) = \sum_{k=k_0}^{\infty} f_k(\tau) z^n$, the leading order term f_{k_0} is an **elliptic** modular form of **level one** and weight w > 0.
- Let $f_{k_0}(\tau) = \sum_{n=0}^{\infty} a_n q^n$ and $n \ge 1$ satisfy $\gcd(n, m_0) = 1$. Then a_n is a **finite sum** of Fourier coefficients $A_F[T]$ for primitive Ts.

Theorem (Zagier 80')

Suppose $\ell > 0$ & $A_F[T] = 0 \ \forall$ primitive $T \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$. Then F = 0.

• Suppose $F \neq 0$ satisfies the hypothesis of the theorem above. Then

$$F(Z) = \sum_{m \geqslant 0} \phi_m(\tau, z) e^{2\pi i \tau'}$$

and there exists $m_0 > 0$ such that $\phi_{m_0} \neq 0$.

- Taylor expanding ϕ_{m_0} as $\phi_{m_0}(\tau, z) = \sum_{k=k_0}^{\infty} f_k(\tau) z^n$, the leading order term f_{k_0} is an **elliptic** modular form of **level one** and weight w > 0.
- Let $f_{k_0}(\tau) = \sum_{n=0}^{\infty} a_n q^n$ and $n \ge 1$ satisfy $\gcd(n, m_0) = 1$. Then a_n is a **finite sum** of Fourier coefficients $A_F[T]$ for primitive Ts.
- Therefore, under the hypothesis of the theorem, $a_n = 0$ for all $n \ge 1$ satisfying $gcd(n, m_0) = 1$. Hence $f_{k_0} = 0$, which is a contradiction.

Contents

- Siegel Modular Forms and Zagier's Theorem
- 2 Quaternionic Modular Forms on Spin(8)
- 3 The Fourier-Jacobi Expansion on Spin(8)

Modular Forms on Spin₈.

• Let $Spin_8 \to SO_8$ be the simply connected split group of type D_4 .

Modular Forms on Spin₈.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $\mathrm{Spin}_8(\mathbb{R})$.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $Spin_8(\mathbb{R})$.
- *K* contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $Spin_8(\mathbb{R})$.
- K contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.
- Get a 3-dimensional K-representation on $\mathbb{V} := \operatorname{Lie}(\mathbb{H}^1) \otimes \mathbb{C}$.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $Spin_8(\mathbb{R})$.
- *K* contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.
- Get a 3-dimensional K-representation on $\mathbb{V} := \operatorname{Lie}(\mathbb{H}^1) \otimes \mathbb{C}$.

Definition

Let $M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$$

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $\operatorname{Spin}_8(\mathbb{R})$.
- *K* contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.
- Get a 3-dimensional K-representation on $\mathbb{V} := \operatorname{Lie}(\mathbb{H}^1) \otimes \mathbb{C}$.

Definition

Let $M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$$

such that Φ is smooth, of moderate growth and satisfies

• If $\gamma \in \operatorname{Spin}_8(\mathbb{Z})$ and $g \in \operatorname{Spin}_8(\mathbb{R})$ then $\Phi(\gamma g) = \Phi(g)$.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $Spin_8(\mathbb{R})$.
- *K* contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.
- Get a 3-dimensional K-representation on $\mathbb{V} := \operatorname{Lie}(\mathbb{H}^1) \otimes \mathbb{C}$.

Definition

Let $M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$$

- If $\gamma \in \operatorname{Spin}_8(\mathbb{Z})$ and $g \in \operatorname{Spin}_8(\mathbb{R})$ then $\Phi(\gamma g) = \Phi(g)$.
- If $k \in K$ and $g \in \operatorname{Spin}_{\aleph}(\mathbb{R})$ then $\Phi(gk) = k^{-1}\Phi(g)$.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $Spin_8(\mathbb{R})$.
- *K* contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.
- Get a 3-dimensional K-representation on $\mathbb{V} := \operatorname{Lie}(\mathbb{H}^1) \otimes \mathbb{C}$.

Definition

Let $M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$$

- If $\gamma \in \operatorname{Spin}_8(\mathbb{Z})$ and $g \in \operatorname{Spin}_8(\mathbb{R})$ then $\Phi(\gamma g) = \Phi(g)$.
- If $k \in K$ and $g \in \operatorname{Spin}_{\aleph}(\mathbb{R})$ then $\Phi(gk) = k^{-1}\Phi(g)$.
- The function Φ satisfies a specific differential equation $D_{\ell}\Phi \equiv 0$.

- Let $Spin_8 \rightarrow SO_8$ be the simply connected split group of type D_4 .
- Let K be a maximal compact subgroup of $\operatorname{Spin}_8(\mathbb{R})$.
- *K* contains a distinguished normal copy of $\mathbb{H}^1 \simeq SU(2)$.
- Get a 3-dimensional K-representation on $\mathbb{V} := \operatorname{Lie}(\mathbb{H}^1) \otimes \mathbb{C}$.

Definition

Let $M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$$

- If $\gamma \in \operatorname{Spin}_8(\mathbb{Z})$ and $g \in \operatorname{Spin}_8(\mathbb{R})$ then $\Phi(\gamma g) = \Phi(g)$.
- If $k \in K$ and $g \in \operatorname{Spin}_{\aleph}(\mathbb{R})$ then $\Phi(gk) = k^{-1}\Phi(g)$.
- The function Φ satisfies a specific differential equation $D_{\ell}\Phi \equiv 0$.
- Φ is $Z(\mathfrak{spin}_8(\mathbb{C}))$ -finite.

Let $P_h = M_h N_h$ be a parabolic associated a **central** node in • .

Let $P_h = M_h N_h$ be a parabolic associated a **central** node in • .

• The Levi-factor $M_h \leqslant P_h$ satisfies $M_h^{\text{der}} = \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2$.

Let $P_h = M_h N_h$ be a parabolic associated a **central** node in • • .

- The Levi-factor $M_h \leqslant P_h$ satisfies $M_h^{\text{der}} = \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2$.
- If J is the quadratic form with Gram matrix $J = \begin{pmatrix} & & 1 \\ & & & \end{pmatrix} \in M_8$ then

$$N_h \simeq \left\{ \left(egin{array}{cccc} I_2 st & \cdots & st & s$$

Let $P_h = M_h N_h$ be a parabolic associated a **central** node in • • .

- The Levi-factor $M_h \leqslant P_h$ satisfies $M_h^{\text{der}} = \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2$.
- If J is the quadratic form with Gram matrix $J = \begin{pmatrix} & & 1 \\ & & \end{pmatrix} \in M_8$ then

• N_h is non-abelian with one dimensional center $Z = [N_h, N_h]$.

Let $P_h = M_h N_h$ be a parabolic associated a **central** node in • \checkmark .

- The Levi-factor $M_h \leqslant P_h$ satisfies $M_h^{\text{der}} = \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2$.
- If J is the quadratic form with Gram matrix $J = \begin{pmatrix} & & 1 \\ & & & \end{pmatrix} \in M_8$ then

- N_h is **non-abelian** with one dimensional **center** $Z = [N_h, N_h]$.
- As a $M_h^{\operatorname{der}}(\mathbb{Z})$ -module, the **character lattice** of $N_h(\mathbb{Z})\backslash N_h(\mathbb{R})$ is

$$\operatorname{Hom}(N_h(\mathbb{Z})\backslash N_h(\mathbb{R}), \mathbb{C}^{\times}) = \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2.$$

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and $U \leqslant \operatorname{Spin}_8$ be a unipotent subgroup.

• The constant term of Φ along U is

$$\Phi_U(g) = \int_{U(\mathbb{Z})\setminus U(\mathbb{R})} \Phi(ug) du.$$

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and $U \leqslant \mathrm{Spin}_8$ be a unipotent subgroup.

• The constant term of Φ along U is

$$\Phi_U(g) = \int_{U(\mathbb{Z})\setminus U(\mathbb{R})} \Phi(ug) du.$$

Theorem (Gross-Wallach 96', Weissman 04', Pollack 20')

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and $U \leqslant \mathrm{Spin}_8$ be a unipotent subgroup.

• The constant term of Φ along U is

$$\Phi_U(g) = \int_{U(\mathbb{Z})\setminus U(\mathbb{R})} \Phi(ug) du.$$

Theorem (Gross-Wallach 96', Weissman 04', Pollack 20')

The constant term $\Phi_Z(g)$ **Fourier expands** along $(Z(\mathbb{R})N_h(\mathbb{Z}))\backslash N_h(\mathbb{R})$ as

$$\Phi_Z(g) = \Phi_{N_h}(g) + \sum_{egin{array}{c} B \in \mathbb{Z}^2 \otimes \mathbb{Z}^2 - \{0\} \ ext{such that det}(B) \geqslant 0 \end{array}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and $U \leqslant \mathrm{Spin}_8$ be a unipotent subgroup.

• The constant term of Φ along U is

$$\Phi_U(g) = \int_{U(\mathbb{Z})\setminus U(\mathbb{R})} \Phi(ug) du.$$

Theorem (Gross-Wallach 96', Weissman 04', Pollack 20')

The constant term $\Phi_Z(g)$ Fourier expands along $(Z(\mathbb{R})N_h(\mathbb{Z}))\backslash N_h(\mathbb{R})$ as

$$\Phi_Z(g) = \Phi_{N_h}(g) + \sum_{\substack{B \,\in\, \mathbb{Z}^2 \,\otimes\, \mathbb{Z}^2 \,\otimes\, \mathbb{Z}^2 \,-\, \{0\} \\ \text{such that } \det(B) \,\geqslant\, 0}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

• The Fourier Coefficient $\Lambda_{\Phi}[B] \in \mathbb{C}$ satisfies the symmetry

$$\Lambda_{\Phi}[B * \gamma] = \Lambda_{\Phi}[B], \qquad B \in \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2, \gamma \in \mathrm{SL}_2(\mathbb{Z})^3.$$

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and $U \leqslant \mathrm{Spin}_8$ be a unipotent subgroup.

• The constant term of Φ along U is

$$\Phi_U(g) = \int_{U(\mathbb{Z})\setminus U(\mathbb{R})} \Phi(ug) du.$$

Theorem (Gross-Wallach 96', Weissman 04', Pollack 20')

The constant term $\Phi_Z(g)$ Fourier expands along $(Z(\mathbb{R})N_h(\mathbb{Z}))\backslash N_h(\mathbb{R})$ as

$$\Phi_Z(g) = \Phi_{N_h}(g) + \sum_{\substack{B \,\in\, \mathbb{Z}^2 \,\otimes\, \mathbb{Z}^2 \,-\, \{0\} \ ext{such that det}(B) \,\geqslant\, 0}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

• The Fourier Coefficient $\Lambda_{\Phi}[B] \in \mathbb{C}$ satisfies the symmetry

$$\Lambda_{\Phi}[B*\gamma] = \Lambda_{\Phi}[B], \qquad B \in \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2, \gamma \in SL_2(\mathbb{Z})^3.$$

• For $B \neq 0$, $W_B(g) : \operatorname{Spin}_8(\mathbb{R}) \to \operatorname{Sym}^{\ell}(\mathbb{V})$ is an **explicit function**, which depends on ℓ and B, and is otherwise independent of Φ .

• Let $W = \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2$ be the space of $2 \times 2 \times 2$ integral matrices

$$B = \begin{vmatrix} e & & \\ & & \\ & & \\ & & \\ & & \\ c & & d \end{vmatrix}, \quad (a, b, \dots, h \in \mathbb{Z})$$

• Let $W = \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2$ be the space of $2 \times 2 \times 2$ integral matrices

• $M_h^{\text{der}}(\mathbb{Z}) = \operatorname{SL}_2(\mathbb{Z})^3$ acts on W preserving the **invariant**

$$\det(B) := 4(ad - bc)(eh - fg) - (ah + ed - bg - fc)^{2}.$$

• Let $W = \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2$ be the space of $2 \times 2 \times 2$ integral matrices

$$B = \begin{pmatrix} e & & f \\ & & b \\ & & b \\ & & & k \\ c & & d \end{pmatrix}, \quad (a, b, \dots, h \in \mathbb{Z})$$

ullet $M_h^{
m der}(\mathbb{Z})={
m SL}_2(\mathbb{Z})^3$ acts on W preserving the **invariant**

$$\det(B) := 4(ad - bc)(eh - fg) - (ah + ed - bg - fc)^{2}.$$

• Slicing the cube B, we obtain a pair of 2×2 integral matrices

$$M_B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad N_B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}.$$

• Let $W = \mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2$ be the space of $2 \times 2 \times 2$ integral matrices

$$B = \begin{bmatrix} e & ---- & f \\ ----- & h \end{bmatrix}, \quad (a, b, \dots, h \in \mathbb{Z})$$

ullet $M_h^{
m der}(\mathbb{Z})={
m SL}_2(\mathbb{Z})^3$ acts on W preserving the **invariant**

$$\det(B) := 4(ad - bc)(eh - fg) - (ah + ed - bg - fc)^{2}.$$

• Slicing the cube B, we obtain a pair of 2×2 integral matrices

$$M_B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad N_B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}.$$

• Then $4 \det(T(B)) = \det(B)$ where $T(B) \in (\operatorname{Sym}^2 \mathbb{Z}^2)^*$ is defined as

$$T(B) := \det(xM_B - vN_B)$$

• Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap M_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Zagier's Theorem in Type D₄

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap M_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is **slice** or **s-primitive** if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap M_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_Z(g) = \Phi_{N_h}(g) + \sum_{B \in W_{>0}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap \mathrm{M}_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_Z(g) = \Phi_{N_h}(g) + \sum_{B \in W_{\geqslant 0}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

(a) If $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{\geq 0}$ then $\Phi = 0$.

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is **slice** or **s-primitive** if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap \mathrm{M}_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_Z(g) = \Phi_{N_h}(g) + \sum_{B \in W_{\geqslant 0}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

- (a) If $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{\geq 0}$ then $\Phi = 0$.
- (b) Let Φ be cuspidal. Then $\Phi = 0$ iff $\Lambda_{\Phi}[B] = 0 \ \forall$ s-primitive $B \in W_{>0}$.

- Say $B \in W \setminus \{0\}$ is primitive if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap \mathrm{M}_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_{Z}(g) = \Phi_{N_h}(g) + \sum_{B \in W_{\geqslant 0}} \Lambda_{\Phi}[B] \mathcal{W}_{B}(g).$$

- (a) If $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{\geq 0}$ then $\Phi = 0$.
- (b) Let Φ be cuspidal. Then $\Phi = 0$ iff $\Lambda_{\Phi}[B] = 0 \ \forall$ s-primitive $B \in W_{>0}$.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24')

- Say $B \in W \setminus \{0\}$ is primitive if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap \mathrm{M}_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_{Z}(g) = \Phi_{N_h}(g) + \sum_{B \in W_{\geqslant 0}} \Lambda_{\Phi}[B] \mathcal{W}_B(g).$$

- (a) If $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{\geq 0}$ then $\Phi = 0$.
- (b) Let Φ be cuspidal. Then $\Phi = 0$ iff $\Lambda_{\Phi}[B] = 0 \ \forall$ s-primitive $B \in W_{>0}$.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24')

Let $\Phi \in M_{\ell}(SO_8(\mathbb{Z}))$ be a cuspidal quaternionic modular on SO_8 . TFAE

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap \mathrm{M}_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_{Z}(g) = \Phi_{N_h}(g) + \sum_{B \in W_{\geqslant 0}} \Lambda_{\Phi}[B] \mathcal{W}_{B}(g).$$

- (a) If $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{\geq 0}$ then $\Phi = 0$.
- (b) Let Φ be cuspidal. Then $\Phi = 0$ iff $\Lambda_{\Phi}[B] = 0 \ \forall$ s-primitive $B \in W_{>0}$.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24')

Let $\Phi \in M_{\ell}(SO_8(\mathbb{Z}))$ be a cuspidal quaternionic modular on SO_8 . TFAE Φ is the theta lift of an element in $M_{\ell}(Sp_4(\mathbb{Z}))$.

- Say $B \in W \setminus \{0\}$ is **primitive** if \mathbb{Q} -span $\{B\} \cap W = \mathbb{Z}$ -span $\{B\}$.
- Say $B \in W \setminus \{0\}$ is slice or s-primitive if

$$\mathbb{Q}$$
-span $\{M_B, N_B\} \cap \mathrm{M}_2(\mathbb{Z}) = \mathbb{Z}$ -span $\{M_B, N_B\}$.

Theorem (M. 25)

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ and set $W_{\geqslant 0} = \{B \in W \setminus \{0\} : \det(B) \geqslant 0\}$ so that

$$\Phi_{Z}(g) = \Phi_{N_h}(g) + \sum_{B \in W_{\geqslant 0}} \Lambda_{\Phi}[B] \mathcal{W}_{B}(g).$$

- (a) If $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{\geq 0}$ then $\Phi = 0$.
- (b) Let Φ be cuspidal. Then $\Phi = 0$ iff $\Lambda_{\Phi}[B] = 0 \ \forall$ s-primitive $B \in W_{>0}$.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24')

Let $\Phi \in M_{\ell}(SO_8(\mathbb{Z}))$ be a cuspidal quaternionic modular on SO_8 . TFAE

- Φ is the theta lift of an element in $M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$.
- If B & B' are s-primitive with T(B) = T(B') then $\Lambda_{\Phi}[B] = \Lambda_{\Phi}[B']$.

Contents

- Siegel Modular Forms and Zagier's Theorem
- 2 Quaternionic Modular Forms on Spin(8)
- $\colone{3}$ The Fourier-Jacobi Expansion on $\mathrm{Spin}(8)$

Orthogonal Fourier-Jacobi Expansion of D_4 Modular Forms

ullet $P_o=M_oN_o$ the parabolic associated to an outer node in ullet .

Orthogonal Fourier-Jacobi Expansion of D₄ Modular Forms

ullet $P_o=M_oN_o$ the parabolic associated to an outer node in ullet .

•
$$M_o^{
m der} = {
m Spin}_6$$
 & $N_o \simeq \left\{ \left(egin{array}{ccc} 1 * \cdots * * * \\ & I_6 & dots \\ & & dots \end{array}
ight)
ight\} \cap {
m SO}(J)$ is abelian.

Orthogonal Fourier-Jacobi Expansion of D4 Modular Forms

- ullet $P_o=M_oN_o$ the parabolic associated to an outer node in ullet .
- $M_o^{\mathrm{der}} = \mathrm{Spin}_6$ & $N_o \simeq \left\{ \begin{pmatrix} 1 & * & * & * & * \\ & I_6 & & \vdots \\ & & * & * \end{pmatrix} \right\} \cap \mathrm{SO}(J)$ is abelian.
- If $(V_6,\langle\cdot,\cdot\rangle)$ is the split **quadratic space** of dimension 6 then

$$V_6(\mathbb{Z}) \xrightarrow{\sim} \operatorname{Hom}(N_o(\mathbb{Z}) \backslash N_o(\mathbb{R}), \mathbb{C}^{\times}), \qquad y \mapsto \chi_y$$

Orthogonal Fourier-Jacobi Expansion of D₄ Modular Forms

- ullet $P_o=M_oN_o$ the parabolic associated to an outer node in ullet .
- $M_o^{
 m der} = {
 m Spin}_6$ & $N_o \simeq \left\{ \left(egin{array}{ccc} 1 * \cdots * * * \\ & I_6 & dots \\ & & dots \\ & & dots \end{array}
 ight)
 ight\} \cap {
 m SO}(J)$ is abelian.
- If $(V_6,\langle\cdot,\cdot\rangle)$ is the split **quadratic space** of dimension 6 then

$$V_6(\mathbb{Z}) \xrightarrow{\sim} \operatorname{Hom}(N_o(\mathbb{Z}) \backslash N_o(\mathbb{R}), \mathbb{C}^{\times}), \qquad y \mapsto \chi_y$$

• For $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$, define $\mathcal{F}_y(\Phi) \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$ as

$$\mathcal{F}_{y}(\Phi)(g) = \int_{N_{o}(\mathbb{Z})\backslash N_{o}(\mathbb{R})} \Phi(ng) \overline{\chi_{y}(n)} dn$$

Orthogonal Fourier-Jacobi Expansion of D₄ Modular Forms

- ullet $P_o=M_oN_o$ the parabolic associated to an outer node in ullet .
- $M_o^{\mathrm{der}} = \mathrm{Spin}_6$ & $N_o \simeq \left\{ \begin{pmatrix} 1 & * & \cdots & * & * \\ & I_6 & & \vdots \\ & & & \vdots \\ & & & 1 \end{pmatrix} \right\} \cap \mathrm{SO}(J)$ is abelian.
- If $(V_6, \langle \cdot, \cdot \rangle)$ is the split **quadratic space** of dimension 6 then

$$V_6(\mathbb{Z}) \xrightarrow{\sim} \operatorname{Hom}(N_o(\mathbb{Z}) \backslash N_o(\mathbb{R}), \mathbb{C}^{\times}), \qquad y \mapsto \chi_y$$

• For $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$, define $\mathcal{F}_y(\Phi) \colon \mathrm{Spin}_8(\mathbb{R}) \to \mathrm{Sym}^{\ell}(\mathbb{V})$ as

$$\mathcal{F}_{y}(\Phi)(g) = \int_{N_{o}(\mathbb{Z})\setminus N_{o}(\mathbb{R})} \Phi(ng) \overline{\chi_{y}(n)} dn$$

Proposition (M. 25')

An element $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ Fourier expands along $N_o(\mathbb{Z}) \backslash N_o(\mathbb{R})$ as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{\substack{v \in V_{\delta}(\mathbb{Z}) \setminus \{0\}; \ \langle v, v \rangle \geqslant 0}} \mathcal{F}_{y}(\Phi)(g).$$

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ has Fourier-Jacobi expansion

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\}: \, \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

Let $y \in V_6(\mathbb{Z})$ satisfy $\langle y, y \rangle > 0$, and $H_y \simeq \mathrm{Sp}_4$ equal $\mathrm{Stab}_{\mathrm{Spin}_6}(y)$.

• Recall $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ has Fourier-Jacobi expansion

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} : \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

Let $y \in V_6(\mathbb{Z})$ satisfy $\langle y, y \rangle > 0$, and $H_y \simeq \operatorname{Sp}_4$ equal $\operatorname{Stab}_{\operatorname{Spin}_6}(y)$.

Proposition (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ has Fourier-Jacobi expansion

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} : \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

Let $y \in V_6(\mathbb{Z})$ satisfy $\langle y, y \rangle > 0$, and $H_y \simeq \mathrm{Sp}_4$ equal $\mathrm{Stab}_{\mathrm{Spin}_6}(y)$.

Proposition (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

(i) There exists a non-zero linear functional $L\colon \operatorname{Sym}^\ell(\mathbb{V}) \to \mathbb{C}$ and an element $g_y \in \operatorname{Spin}_8(\mathbb{R})$ such that if $\Phi \in M_\ell(\operatorname{Spin}_8(\mathbb{Z}))$ then the function

$$\xi_{y} \colon H_{y}(\mathbb{R}) \to \mathbb{C}, \qquad \xi_{y}(h) := L(\mathcal{F}_{y}(\Phi)(hg_{y}))$$

is a weight ℓ holomorphic modular form on $H_{\nu}(\mathbb{Z}) := H_{\nu}(\mathbb{Q}) \cap \operatorname{Spin}_{8}(\mathbb{Z})$.

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ has Fourier-Jacobi expansion

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} : \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

Let $y \in V_6(\mathbb{Z})$ satisfy $\langle y, y \rangle > 0$, and $H_y \simeq \mathrm{Sp}_4$ equal $\mathrm{Stab}_{\mathrm{Spin}_6}(y)$.

Proposition (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

(i) There exists a non-zero linear functional $L \colon \operatorname{Sym}^{\ell}(\mathbb{V}) \to \mathbb{C}$ and an element $g_y \in \operatorname{Spin}_8(\mathbb{R})$ such that if $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ then the function

$$\xi_{y} \colon H_{y}(\mathbb{R}) \to \mathbb{C}, \qquad \xi_{y}(h) := L(\mathcal{F}_{y}(\Phi)(hg_{y}))$$

is a weight ℓ holomorphic modular form on $H_y(\mathbb{Z}) := H_y(\mathbb{Q}) \cap \operatorname{Spin}_8(\mathbb{Z})$.

(ii) We have the implication

$$\xi_{v} \equiv 0 \Longrightarrow \mathcal{F}_{v}(\Phi) \equiv 0.$$

Let N_y be the unipotent radical of a **Siegel parabolic** in $H_y \simeq \mathrm{Sp}_4$.

Let N_y be the unipotent radical of a **Siegel parabolic** in $H_y \simeq \mathrm{Sp}_4$.

Lemma (M. 25')

Let ξ be a weight $\ell > 0$ modular form on $H_y(\mathbb{Z})$ with Fourier coefficients

$$A_{\xi}[\chi] = \int_{N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R})} \xi(n) \overline{\chi(n)} \, dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

If
$$A_{\xi}[\chi] = 0$$
 for all primitive $\chi \in \text{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times})$ then $\xi = 0$.

Let N_y be the unipotent radical of a **Siegel parabolic** in $H_y \simeq \mathrm{Sp}_4$.

Lemma (M. 25')

Let ξ be a weight $\ell > 0$ modular form on $H_y(\mathbb{Z})$ with Fourier coefficients

$$A_{\xi}[\chi] = \int_{N_{y}(\mathbb{Z}) \setminus N_{y}(\mathbb{R})} \xi(n) \overline{\chi(n)} \, dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z}) \setminus N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

If $A_{\xi}[\chi] = 0$ for all **primitive** $\chi \in \text{Hom}(N_y(\mathbb{Z}) \backslash N_y(\mathbb{R}), \mathbb{C}^{\times})$ then $\xi = 0$.

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and $y \in V_6(\mathbb{Z}) \setminus \{0\}$ satisfy $\langle y, y \rangle > 0$.

Let N_y be the unipotent radical of a **Siegel parabolic** in $H_y \simeq \mathrm{Sp}_4$.

Lemma (M. 25')

Let ξ be a weight $\ell > 0$ modular form on $H_y(\mathbb{Z})$ with Fourier coefficients

$$A_{\xi}[\chi] = \int_{N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R})} \xi(n) \overline{\chi(n)} \, dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

If $A_{\xi}[\chi] = 0$ for all primitive $\chi \in \text{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times})$ then $\xi = 0$.

Let
$$\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$$
 and $y \in V_6(\mathbb{Z}) \setminus \{0\}$ satisfy $\langle y, y \rangle > 0$.

• The primitive Fourier coefficients of ξ_y are given by **finite sums** of Fourier coefficients $\Lambda_{\Phi}[B]$ where B is primitive.

Let N_y be the unipotent radical of a **Siegel parabolic** in $H_y \simeq \mathrm{Sp}_4$.

Lemma (M. 25')

Let ξ be a weight $\ell > 0$ modular form on $H_y(\mathbb{Z})$ with Fourier coefficients

$$A_{\xi}[\chi] = \int_{N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R})} \xi(n) \overline{\chi(n)} \, dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

If $A_{\xi}[\chi] = 0$ for all primitive $\chi \in \text{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times})$ then $\xi = 0$.

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and $y \in V_6(\mathbb{Z}) \setminus \{0\}$ satisfy $\langle y, y \rangle > 0$.

- The primitive Fourier coefficients of ξ_y are given by **finite sums** of Fourier coefficients $\Lambda_{\Phi}[B]$ where B is primitive.
- Therefore, under the hypothesis that $\Lambda_{\Phi}[B] = 0$ for all primitive B, the primitive Fourier coefficients of ξ_{ν} vanish. Hence, $\xi_{\nu} = 0$.

Let N_y be the unipotent radical of a Siegel parabolic in $H_y \simeq \mathrm{Sp}_4$.

Lemma (M. 25')

Let ξ be a weight $\ell > 0$ modular form on $H_y(\mathbb{Z})$ with Fourier coefficients

$$A_{\xi}[\chi] = \int_{N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R})} \xi(n) \overline{\chi(n)} \, dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

If $A_{\xi}[\chi] = 0$ for all **primitive** $\chi \in \operatorname{Hom}(N_{y}(\mathbb{Z}) \backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times})$ then $\xi = 0$.

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ and $y \in V_6(\mathbb{Z}) \setminus \{0\}$ satisfy $\langle y, y \rangle > 0$.

- The primitive Fourier coefficients of ξ_y are given by **finite sums** of Fourier coefficients $\Lambda_{\Phi}[B]$ where B is primitive.
- Therefore, under the hypothesis that $\Lambda_{\Phi}[B] = 0$ for all primitive B, the primitive Fourier coefficients of ξ_{ν} vanish. Hence, $\xi_{\nu} = 0$.
- Therefore, part (ii) of the previous proposition implies $\mathcal{F}_{\nu}(\Phi) = 0$.

• Recall $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ Fourier Jacobi expands as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} : \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ Fourier Jacobi expands as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} : \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

• It remains to analyze the coefficients $\mathcal{F}_y(\Phi)$ for isotropic $y \in V_6(\mathbb{Z})$.

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ Fourier Jacobi expands as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} \colon \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

• It remains to analyze the coefficients $\mathcal{F}_y(\Phi)$ for isotropic $y \in V_6(\mathbb{Z})$.

Lemma (M. 25')

Let $y \in V_6(\mathbb{Z}) - \{0\}$ be isotropic.

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ Fourier Jacobi expands as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} \colon \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

• It remains to analyze the coefficients $\mathcal{F}_y(\Phi)$ for isotropic $y \in V_6(\mathbb{Z})$.

Lemma (M. 25')

Let $y \in V_6(\mathbb{Z}) - \{0\}$ be isotropic. There exists $\gamma \in M_o^{\operatorname{der}}(\mathbb{Z}) = \operatorname{Spin}_6(\mathbb{Z})$ such that if $y' = \gamma \cdot y$ then the Fourier Jacobi coefficient

$$\mathcal{F}_{y'}(\Phi)(g) := \int_{N_o(\mathbb{Z}) \setminus N_o(\mathbb{R})} \Phi(ng) \overline{\chi_{y'}(n)} \, dn$$

factors across the constant term $\Phi_{N_b}(g)$.

• Recall $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ Fourier Jacobi expands as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} \colon \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

• It remains to analyze the coefficients $\mathcal{F}_y(\Phi)$ for isotropic $y \in V_6(\mathbb{Z})$.

Lemma (M. 25')

Let $y \in V_6(\mathbb{Z}) - \{0\}$ be isotropic. There exists $\gamma \in M_o^{\operatorname{der}}(\mathbb{Z}) = \operatorname{Spin}_6(\mathbb{Z})$ such that if $y' = \gamma \cdot y$ then the Fourier Jacobi coefficient

$$\mathcal{F}_{y'}(\Phi)(g) := \int_{N_a(\mathbb{Z}) \setminus N_a(\mathbb{R})} \Phi(ng) \overline{\chi_{y'}(n)} dn$$

factors across the **constant term** $\Phi_{N_h}(g)$. In particular, to establish the vanishing on $\mathcal{F}_v(\Phi)$, it suffices to show that $\Phi_{N_h} \equiv 0$.

• Recall $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$ Fourier Jacobi expands as

$$\Phi(g) = \Phi_{N_o}(g) + \sum_{y \in V_6(\mathbb{Z}) - \{0\} \colon \langle y, y \rangle \geqslant 0} \mathcal{F}_y(\Phi)(g)$$

• It remains to analyze the coefficients $\mathcal{F}_y(\Phi)$ for isotropic $y \in V_6(\mathbb{Z})$.

Lemma (M. 25')

Let $y \in V_6(\mathbb{Z}) - \{0\}$ be isotropic. There exists $\gamma \in M_o^{\operatorname{der}}(\mathbb{Z}) = \operatorname{Spin}_6(\mathbb{Z})$ such that if $y' = \gamma \cdot y$ then the Fourier Jacobi coefficient

$$\mathcal{F}_{\mathbf{y}'}(\Phi)(g) := \int_{N_o(\mathbb{Z}) \setminus N_o(\mathbb{R})} \Phi(ng) \overline{\chi_{\mathbf{y}'}(n)} \, dn$$

factors across the **constant term** $\Phi_{N_h}(g)$. In particular, to establish the vanishing on $\mathcal{F}_y(\Phi)$, it suffices to show that $\Phi_{N_h} \equiv 0$.

This concludes the proof of part (a) of our main theorem for Φ cuspidal .

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$, write $U = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \}$, and recall $M_h^{\mathrm{der}} = \mathrm{SL}_2^3$.

Analysis of the Constant Term Φ_{N_h}

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$, write $U = \{ \left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix} \right) \colon x \in \mathbb{R} \}$, and recall $M_h^{\mathrm{der}} = \mathrm{SL}_2^3$.

Theorem (Pollack 20')

There exists a non-zero linear functional $L \colon \operatorname{Sym}^{\ell}(\mathbb{V}) \to \mathbb{C}$ such that if $\Phi \in M_{\ell}(\operatorname{Spin}_{8}(\mathbb{Z}))$ is such that $\Phi_{N_{h}} \not\equiv 0$ then the function

$$\phi \colon M_h^{\operatorname{der}}(\mathbb{R}) \to \mathbb{C}, \quad \phi(g) = L(\Phi_{N_h}(g))$$

is a non-zero weight (ℓ, ℓ, ℓ) holomorphic modular form on $SL_2(\mathbb{Z})^3$.

Analysis of the Constant Term Φ_{N_h}

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$, write $U = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \}$, and recall $M_h^{\mathrm{der}} = \mathrm{SL}_2^3$.

Theorem (Pollack 20')

There exists a non-zero linear functional $L \colon \operatorname{Sym}^{\ell}(\mathbb{V}) \to \mathbb{C}$ such that if $\Phi \in M_{\ell}(\operatorname{Spin}_{8}(\mathbb{Z}))$ is such that $\Phi_{N_{h}} \not\equiv 0$ then the function

$$\phi: M_h^{\operatorname{der}}(\mathbb{R}) \to \mathbb{C}, \quad \phi(g) = L(\Phi_{N_h}(g))$$

is a non-zero weight (ℓ,ℓ,ℓ) holomorphic modular form on $\mathrm{SL}_2(\mathbb{Z})^3$.

In classical notation the modular form ϕ admits a q-expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

Analysis of the Constant Term Φ_{N_h}

Let $\Phi \in M_{\ell}(\mathrm{Spin}_8(\mathbb{Z}))$, write $U = \{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R}\}$, and recall $M_h^{\mathrm{der}} = \mathrm{SL}_2^3$.

Theorem (Pollack 20')

There exists a non-zero linear functional $L \colon \operatorname{Sym}^{\ell}(\mathbb{V}) \to \mathbb{C}$ such that if $\Phi \in M_{\ell}(\operatorname{Spin}_{8}(\mathbb{Z}))$ is such that $\Phi_{N_{h}} \not\equiv 0$ then the function

$$\phi \colon M_h^{\operatorname{der}}(\mathbb{R}) \to \mathbb{C}, \quad \phi(g) = L(\Phi_{N_h}(g))$$

is a non-zero weight (ℓ,ℓ,ℓ) holomorphic modular form on $\mathrm{SL}_2(\mathbb{Z})^3$.

In classical notation the modular form ϕ admits a q-expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

Proposition (M. 25')

If $n:=(n_1,n_2,n_3)\neq 0$ then $a_\phi(n)$ is a **finite sum** of Fourier coefficients $\Lambda_\Phi[B]$ where B is of the form

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

Let $\Phi \in M_{\ell}(\operatorname{Spin}_8(\mathbb{Z}))$ be such that $\Lambda_{\Phi}[B] = 0$ for all primitive B.

By the previous proposition, the primitive Fourier coefficients of φ
are finite sums of Fourier coefficients Λ_Φ[B] where B is primitive.

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

- By the previous proposition, the primitive Fourier coefficients of φ
 are finite sums of Fourier coefficients Λ_Φ[B] where B is primitive.
- Therefore, by the above lemma $\phi = 0$, and thus $\Phi_{N_b} \equiv 0$.

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

- By the previous proposition, the primitive Fourier coefficients of φ
 are finite sums of Fourier coefficients Λ_Φ[B] where B is primitive.
- Therefore, by the above lemma $\phi = 0$, and thus $\Phi_{N_b} \equiv 0$.
- Hence, $\mathcal{F}_v(\Phi) \equiv 0$ for all $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle \geqslant 0$.

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

- By the previous proposition, the primitive Fourier coefficients of φ
 are finite sums of Fourier coefficients Λ_Φ[B] where B is primitive.
- Therefore, by the above lemma $\phi = 0$, and thus $\Phi_{N_b} \equiv 0$.
- Hence, $\mathcal{F}_{y}(\Phi) \equiv 0$ for all $y \in V_{6}(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle \geqslant 0$.
- Therefore, $\Phi = \Phi_{N_o}$ is left $N_o(\mathbb{R})$ -invariant.

Lemma (M. 25')

Suppose $\ell > 0$ and let $\phi \in M_{(\ell,\ell,\ell)}(\mathrm{SL}_2(\mathbb{Z})^3)$ with Fourier Expansion

$$\phi(z_1, z_2, z_3) = \sum_{n_1, n_2, n_3 \geqslant 0} a_{\phi}(n_1, n_2, n_3) e^{2\pi i (n_1 z_1 + n_2 z_2 + n_3 z_3)}$$

If $a_{\phi}(n_1, n_2, n_3) = 0$ for all jointly coprime $(n_1, n_2, n_3) \in \mathbb{Z}^3$ then $\phi = 0$.

- By the previous proposition, the primitive Fourier coefficients of φ
 are finite sums of Fourier coefficients Λ_Φ[B] where B is primitive.
- Therefore, by the above lemma $\phi = 0$, and thus $\Phi_{N_b} \equiv 0$.
- Hence, $\mathcal{F}_v(\Phi) \equiv 0$ for all $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle \geqslant 0$.
- Therefore, $\Phi = \Phi_{N_o}$ is left $N_o(\mathbb{R})$ -invariant. However, since $\operatorname{Spin}_8(\mathbb{R}) = \langle N_o(\mathbb{R}), \operatorname{Spin}_8(\mathbb{Z}) \rangle$, it follows that Φ is zero.

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$.

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$. In particular, $\Phi \equiv 0$ provided $\Lambda_{\Phi}[B] = 0$ for all **primitive** $B \in W_{>0}$.

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$. In particular, $\Phi \equiv 0$ provided $\Lambda_{\Phi}[B] = 0$ for all **primitive** $B \in W_{>0}$.

• For $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle > 0$, recall the Fourier coefficients

$$A_{\xi_{y}}[\chi] = \int_{N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R})} \xi_{y}(n) \overline{\chi(n)} \, dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$. In particular, $\Phi \equiv 0$ provided $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{>0}$.

• For $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle > 0$, recall the Fourier coefficients

$$A_{\xi_{y}}[\chi] = \int_{N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R})} \xi_{y}(n) \overline{\chi(n)} dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

Lemma (M. 25')

(i) If $B \in W_{>0}$ is **primitive**, then there exists a **primitive** $y \in V_6(\mathbb{Z})$ satisfying $\langle y, y \rangle > 0$, and a character χ , such that $A_{\xi_y}[\chi] = \Lambda_{\Phi}[B]$.

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$. In particular, $\Phi \equiv 0$ provided $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{>0}$.

• For $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle > 0$, recall the Fourier coefficients

$$A_{\xi_{y}}[\chi] = \int_{N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R})} \xi_{y}(n) \overline{\chi(n)} dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

Lemma (M. 25')

- (i) If $B \in W_{>0}$ is **primitive**, then there exists a **primitive** $y \in V_6(\mathbb{Z})$ satisfying $\langle y, y \rangle > 0$, and a character χ , such that $A_{\mathcal{E}_s}[\chi] = \Lambda_{\Phi}[B]$.
- (ii) Let $y \in V_6(\mathbb{Z})$ be **primitive** with $\langle y, y \rangle > 0$. If χ is **primitive**, then there exists an **s-primitive** $B \in W_{>0}$ such that $A_{\mathcal{E}_n}[\chi] = \Lambda_{\Phi}[B]$.

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$. In particular, $\Phi \equiv 0$ provided $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{>0}$.

• For $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle > 0$, recall the Fourier coefficients

$$A_{\xi_{y}}[\chi] = \int_{N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R})} \xi_{y}(n) \overline{\chi(n)} dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

Lemma (M. 25')

- (i) If $B \in W_{>0}$ is **primitive**, then there exists a **primitive** $y \in V_6(\mathbb{Z})$ satisfying $\langle y, y \rangle > 0$, and a character χ , such that $A_{\xi_y}[\chi] = \Lambda_{\Phi}[B]$.
- (ii) Let $y \in V_6(\mathbb{Z})$ be **primitive** with $\langle y, y \rangle > 0$. If χ is **primitive**, then there exists an **s-primitive** $B \in W_{>0}$ such that $A_{\mathcal{E}_{\nu}}[\chi] = \Lambda_{\Phi}[B]$.
 - Assuming the **s-primitive** Fourier coefficients of Φ vanish, (ii) implies that $\xi_v \equiv 0$ for all **primitive** $y \in V_6(\mathbb{Z})$ satisfying $\langle y, y \rangle > 0$.

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24', M. 25')

Suppose Φ is cuspidal. If $B \in W_{\geqslant 0}$ satisfies $\det(B) = 0$ then $\Lambda_{\Phi}[B] = 0$. In particular, $\Phi \equiv 0$ provided $\Lambda_{\Phi}[B] = 0$ for all primitive $B \in W_{>0}$.

• For $y \in V_6(\mathbb{Z}) \setminus \{0\}$ such that $\langle y, y \rangle > 0$, recall the Fourier coefficients

$$A_{\xi_{y}}[\chi] = \int_{N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R})} \xi_{y}(n) \overline{\chi(n)} dn, \quad \chi \in \operatorname{Hom}(N_{y}(\mathbb{Z})\backslash N_{y}(\mathbb{R}), \mathbb{C}^{\times}).$$

Lemma (M. 25')

- (i) If $B \in W_{>0}$ is **primitive**, then there exists a **primitive** $y \in V_6(\mathbb{Z})$ satisfying $\langle y, y \rangle > 0$, and a character χ , such that $A_{\xi_y}[\chi] = \Lambda_{\Phi}[B]$.
- (ii) Let $y \in V_6(\mathbb{Z})$ be **primitive** with $\langle y, y \rangle > 0$. If χ is **primitive**, then there exists an **s-primitive** $B \in W_{>0}$ such that $A_{\xi_y}[\chi] = \Lambda_{\Phi}[B]$.
 - Assuming the s-primitive Fourier coefficients of Φ vanish, (ii) implies that ξ_y ≡ 0 for all primitive y ∈ V₆(Z) satisfying ⟨y, y⟩ > 0.
 - Applying (i), we conclude that $\Lambda_{\Phi}[B]=0$ for all primitive $B\in W_{>0}$.

Thank You for Listening