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Integral Binary Quadratic Forms

@ Let (Sym? Z?)* denote the set of integral binary quadratic forms
T =nx2+rxy+my2,

n,r,meZ7Z.
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Integral Binary Quadratic Forms

@ Let (Sym? Z?)* denote the set of integral binary quadratic forms

T:nx2+rxy+my2, n,r,me 7.

@ The group SL,(Z) acts on (Sym? Z?)* by linear substitution

b
T(x,y) * (Z d) = T(ax + by, cx + dy), <Z Z) € SL,(Z).

r2

preserving the quadratic invariant det(7) := nm — T
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Integral Binary Quadratic Forms

@ Let (Sym? Z?)* denote the set of integral binary quadratic forms

T:nx2+rxy+my2, n,r,me 7.

@ The group SL,(Z) acts on (Sym? Z?)* by linear substitution

T(x,y) * (Z Z) = T(ax + by, cx + dy), <Z Z) € SL,(Z).

r2

preserving the quadratic invariant det(7) := nm — T

@ Equivalently, (Sym” Z?)* consists of 1/2-integral symmetric matrices

r= <r1/12 rr/nz>

with y € SL,(Z) actingby T =y = y'Ty.



Binary Quadratic Forms and the Siegel Parabolic P;

@ The symplectic group

A B
Sp“:{(c D

) € SLy: AB' = BA',CD" = DC', AD' — BC' = 1}
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Binary Quadratic Forms and the Siegel Parabolic P;

@ The symplectic group

Sp, = {(é g) € SLy: AB' = BA',CD' = DC', AD' — BC' = 1}

@ The P, = M;N, < Sp, has unipotent radical

NS={<(I) l;):BeMz and B’=B}§Sp4.

and Levi factor M, ~ GL,.
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Binary Quadratic Forms and the Siegel Parabolic P;
@ The symplectic group

Sp, = {(é g) € SLy: AB' = BA',CD' = DC', AD' — BC' = 1}

@ The P, = M;N, < Sp, has unipotent radical

NS={<(I) l;):BeMz and B’=B}§Sp4.

and Levi factor M, ~ GL,.
@ Then as a module over SL,(Z) = M%(Z),

Hom(N(Z)\Ns(R),C*) ~
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Binary Quadratic Forms and the Siegel Parabolic P;
@ The symplectic group

Sp, = {(é g) € SLy: AB' = BA',CD' = DC', AD' — BC' = 1}

@ The P, = M;N, < Sp, has unipotent radical

N, = {(é l;) :Be M, and B’=B} < Spy-
and Levi factor M, ~ GL,.
@ Then as a module over SL,(Z) = M%(Z),
Hom(N,(Z)\N,(R),C*) ~ (Sym? Z*)*
via the map sending T e (Sym” Z?)* to the character

xr: N@)\N(R) > C%,  xr <<{) f)) — exp(2xitr(BT)).



Siegel Modular Forms and Zagier's Theorem Quaternionic Modular Forms on Spin(8) The Fourier-Jacobi Expansion on Spin(8)

Siegel Modular Forms

The symplectic group Sp,(R) acts on the complex three-fold

H, = {C f) € My(C): im(7),im(7’),im(r) im(') — im(z)* > o}

via the biholomorphic transformations (£ 5) - Z = (AZ + B)(CZ + D)~
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Siegel Modular Forms

The symplectic group Sp,(R) acts on the complex three-fold
Hy = {C f) € Mb(C): im(r),im(7'),im(7) im(7’) — im(z)? > o}

via the biholomorphic transformations (£ 5) - Z = (AZ + B)(CZ + D)~

Definition (Siegel Modular Forms)

Let ¢ € Z=( and write M,(Sp4(Z)) for the space of holomorphic functions
F: 7’{2 —C

such that F(y-Z) = det(CZ+ D)'F(Z)Vy = (2 B) € Sp,(Z) and Z € H,.
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Siegel Modular Forms

The symplectic group Sp,(R) acts on the complex three-fold
Hy = {C f) € Mb(C): im(r),im(7'),im(7) im(7’) — im(z)? > o}

via the biholomorphic transformations (£ 5) - Z = (AZ + B)(CZ + D)~

Definition (Siegel Modular Forms)

Let ¢ € Z=( and write M,(Sp4(Z)) for the space of holomorphic functions
F: 7’{2 —C

such that F(y-Z) = det(CZ+ D)'F(Z)Vy = (2 B) € Sp,(Z) and Z € H,.

o Ify= (é IIB) , the transformation law of F € M,(Sp,(Z)) implies

F(Z+B)=F(Z)

for all Z € H, and B € M,(Z) such that B' = B,
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The Fourier Expansion of Siegel Modular Forms

Fourier expanding F € M,(Sp,(Z)) in characters of N;(Z)\N;(R) gives

F(z) = > Ap[T] exp(27itr(TZ)).
Te(Sym?Z2)* : det(T)=0
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The Fourier Expansion of Siegel Modular Forms

Fourier expanding F € M,(Sp,(Z)) in characters of N;(Z)\N;(R) gives
F(z) = > Ap[T] exp(27itr(TZ)).

Te(Sym?Z2)* : det(T)=0

@ Here the Fourier Coefficient Az[T] € C is given by

Ap[T] = exp(2rte(T)) F(n-ib)yr(n)~ dn. (1)

JNx (Z)\Ns(R)
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The Fourier Expansion of Siegel Modular Forms

Fourier expanding F € M,(Sp,(Z)) in characters of N;(Z)\N;(R) gives
F(z) = > Ap[T] exp(27itr(TZ)).

Te(Sym?Z2)%* : det(T)=0

@ Here the Fourier Coefficient Az[T] € C is given by

Ap[T] = exp(2rte(T)) F(n-ib)yr(n)~ dn. (1)

JNx (Z)\Ns(R)

@ Since M (Z) normalizes N,(Z), changing variables in (1) gives
Ap[T xy] = Ap[T]

forall T e (Sym*Z?)* and y € M%"(Z) = SL,(Z).



Zagier's Theorem

@ Say T = ax’ + bxy + cy* is primitive if gcd(a, b, c) = 1.

@ In his work on the Saito-Kurokawa conjecture, Zagier proves:

DA
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Zagier’'s Theorem

@ Say T = ax’ + bxy + cy* is primitive if gcd(a, b, c) = 1.

@ In his work on the Saito-Kurokawa conjecture, Zagier proves:
Theorem (Zagier 1980)
Suppose F € M,(Sp,(Z)) with € € Z~, and Fourier expansion

F(z) = > Ap[T] exp(2ni tr(TZ)).
Te(Sym?Z2)%* : det(T)=0

If Ap[T] = 0 for all primitive T € (Sym? Z?)*, then F = 0.
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Zagier’'s Theorem

@ Say T = ax’ + bxy + cy* is primitive if gcd(a, b, c) = 1.

@ In his work on the Saito-Kurokawa conjecture, Zagier proves:
Theorem (Zagier 1980)
Suppose F € M,(Sp,(Z)) with € € Z~, and Fourier expansion

F(z) = > Ap[T] exp(2ni tr(TZ)).
Te(Sym?Z2)%* : det(T)=0

If Ap[T] = 0 for all primitive T € (Sym? Z?)*, then F = 0.

| 5\

Corollary
Suppose F, F, € M¢(Sp,(Z)). Then F, = F, if and only

AFl [T] = AFz [T]

for all primitive integral binary quadratic forms T € (Sym? Z?)*.

N
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Some History on Zagier’s Theorem

Since the work of Zagier, the problem of determining a modular forms
using Fourier coefficients has been studied more extensively:
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Some History on Zagier's Theorem

Since the work of Zagier, the problem of determining a modular forms
using Fourier coefficients has been studied more extensively:

@ Gan-Gross-Savin (02’) (A level one Quaternionic Hecke eigenform
form on G, is zero iff its primitive Fourier coefficients are zero).
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Some History on Zagier's Theorem

Since the work of Zagier, the problem of determining a modular forms
using Fourier coefficients has been studied more extensively:

@ Gan-Gross-Savin (02’) (A level one Quaternionic Hecke eigenform
form on G, is zero iff its primitive Fourier coefficients are zero).

@ Saha (13’) (A genus 2, level one, cuspidal Siegel modular form F is
zero iff Ap[T] = 0 for all T such that —4 det(T') square-free & odd),
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Some History on Zagier's Theorem

Since the work of Zagier, the problem of determining a modular forms
using Fourier coefficients has been studied more extensively:

@ Gan-Gross-Savin (02’) (A level one Quaternionic Hecke eigenform
form on G, is zero iff its primitive Fourier coefficients are zero).

@ Saha (13’) (A genus 2, level one, cuspidal Siegel modular form F is
zero iff Ap[T] = 0 for all T such that —4 det(T') square-free & odd),

@ Yamana (09’) (Holomorphic modular forms on classical groups are
determined by their primitive Fourier coefficients).
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Proof Zagier's Theorem |: The Fourier Jacobi Expansion of Siegel Modular Forms

@ Let P, = M;N; denote the Klingen type parabolic in Sp,.
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Proof Zagier's Theorem |: The Fourier Jacobi Expansion of Siegel Modular Forms

@ Let P, = M;N; denote the Klingen type parabolic in Sp,.

1000
@ Then N; is Heisenberg group with center Z;, = { (8 39 3;) }
0001
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Proof Zagier's Theorem |: The Fourier Jacobi Expansion of Siegel Modular Forms

@ Let P, = M;N; denote the Klingen type parabolic in Sp,.

1000
@ Then N; is Heisenberg group with center Z;, = { (8 oY 3;) }
0001

@ If F e M;(Sp,(Z)), then the Fourier-Jacobi expansion of F is

F <C TZ,>> = i b (7, 7)1

m=0
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Proof Zagier's Theorem |: The Fourier Jacobi Expansion of Siegel Modular Forms

@ Let P, = M;N; denote the Klingen type parabolic in Sp,.

1000
@ Then N; is Heisenberg group with center Z;, = { (8 oY 3;) }
0001

@ If F e M;(Sp,(Z)), then the Fourier-Jacobi expansion of F is

T Z _ J 2mimt’
F <(Z T,)) = ”;0¢m(7',2)€ .

Here ¢,,: H; x C — Cis a Jacobi form of index m > 0 given by

: T Z —2nimt’ 3t
¢m(T,z):L F((Z T,))e dar’.
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Proof Zagier's Theorem |: The Fourier Jacobi Expansion of Siegel Modular Forms

@ Let P, = M;N; denote the Klingen type parabolic in Sp,.

1000
@ Then N; is Heisenberg group with center Z;, = { (8 oY 3;) }
0001

@ If F e M;(Sp,(Z)), then the Fourier-Jacobi expansion of F is

F <C TZ,>> = i b (7, 7)1

m=0

Here ¢,,: H; x C — Cis a Jacobi form of index m > 0 given by

: T Z —2nimt’ 3t
¢m(T,z):L F((Z T,))e dar’.

@ Form > 0, ¢,, inherits a transformation law with respect to

SLy(Z) < Z> ~ H; x C.
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Proof of Zagier's Theorem II: Putting the Pieces Together

Theorem (Zagier 80°)

Suppose £ > 0 & Ap[T] = 0V primitive T € (Sym? Z?)*. Then F = 0.

@ Suppose F # 0 satisfies the hypothesis of the theorem above.
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Proof of Zagier's Theorem II: Putting the Pieces Together

Theorem (Zagier 80°)

Suppose £ > 0 & Ap[T] = 0V primitive T € (Sym? Z?)*. Then F = 0.

@ Suppose F # 0 satisfies the hypothesis of the theorem above. Then

F(Z) = )] ¢n(r2)e™

m=0

and there exists my > 0 such that ¢,,, # 0.
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Proof of Zagier's Theorem II: Putting the Pieces Together

Theorem (Zagier 80°)

Suppose £ > 0 & Ap[T] = 0V primitive T € (Sym? Z?)*. Then F = 0.

@ Suppose F # 0 satisfies the hypothesis of the theorem above. Then
F(Z) = ), ¢n(r.2)e™
m=0
and there exists my > 0 such that ¢,,, # 0.

@ Taylor expanding ¢,,, as ¢, (7.2) = X~ fe(7)Z", the leading order
term f;, is an elliptic modular form of level one and weight w > 0.



Siegel Modular Forms and Zagier's Theorem Quaternionic Modular Forms on Spin(8) The Fourier-Jacobi Expansion on Spin(8)

Proof of Zagier's Theorem II: Putting the Pieces Together

Theorem (Zagier 80°)

Suppose £ > 0 & Ap[T] = 0V primitive T € (Sym? Z?)*. Then F = 0.

@ Suppose F # 0 satisfies the hypothesis of the theorem above. Then
F(Z) = ), ¢n(r.2)e™
m=0
and there exists my > 0 such that ¢,,, # 0.

@ Taylor expanding ¢,,, as ¢, (7.2) = X~ fe(7)Z", the leading order
term f;, is an elliptic modular form of level one and weight w > 0.

@ Let fi, (1) = X7 ya.q" and n > 1 satisfy ged(n, my) = 1. Then a, is
a finite sum of Fourier coefficients Ar[T] for primitive T's.
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Proof of Zagier's Theorem II: Putting the Pieces Together

Theorem (Zagier 80°)

Suppose £ > 0 & Ap[T] = 0V primitive T € (Sym? Z?)*. Then F = 0.

@ Suppose F # 0 satisfies the hypothesis of the theorem above. Then
F(Z) = ), ¢n(r.2)e™
m=0
and there exists my > 0 such that ¢,,, # 0.

@ Taylor expanding ¢,,, as ¢, (7.2) = X~ fe(7)Z", the leading order
term fi, is an elliptic modular form of level one and weight w > 0.

@ Let fi, (1) = X7 ya.q" and n > 1 satisfy ged(n, my) = 1. Then a, is
a finite sum of Fourier coefficients Ar[T] for primitive T's.

@ Therefore, under the hypothesis of the theorem, @, = O forall n > 1
satisfying gcd(n, my) = 1. Hence f;, = 0, which is a contradiction.



o Siegel Modular Forms and Zagier’s Theorem

e Quaternionic Modular Forms on Spin(8)

@ The Fourier-Jacobi Expansion on Spin(8)
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@ Let Sping — SOg be the simply connected split group of type D..

«O0>» «F»r « =>»

« =)
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..

@ Let K be a maximal compact subgroup of Sping(R).
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).

@ K contains a distinguished normal copy of H! ~ SU(2).
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).
@ K contains a distinguished normal copy of H! ~ SU(2).

@ Get a 3-dimensional K-representation on V := Lie(H') ® C.
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).

@ K contains a distinguished normal copy of H! ~ SU(2).

@ Get a 3-dimensional K-representation on V := Lie(H') ® C.

Let M,(Sping(Z)) denote the space of functions

®: Sping(R) — Sym(V)

such that @ is smooth, of moderate growth and satisfies
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).

@ K contains a distinguished normal copy of H! ~ SU(2).

@ Get a 3-dimensional K-representation on V := Lie(H') ® C.

Let M,(Sping(Z)) denote the space of functions

®: Sping(R) — Sym(V)

such that @ is smooth, of moderate growth and satisfies

@ If y € Sping(Z) and g € Sping(R) then @ (yg) = ®(g).
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).

@ K contains a distinguished normal copy of H! ~ SU(2).

@ Get a 3-dimensional K-representation on V := Lie(H') ® C.

Let M,(Sping(Z)) denote the space of functions

®: Sping(R) — Sym(V)
such that @ is smooth, of moderate growth and satisfies
@ If y € Sping(Z) and g € Sping(R) then @ (yg) = ®(g).
@ If k€ K and g € Sping(R) then ®(gk) = k~'d(g).
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).

@ K contains a distinguished normal copy of H! ~ SU(2).

@ Get a 3-dimensional K-representation on V := Lie(H') ® C.

Let M,(Sping(Z)) denote the space of functions

®: Sping(R) — Sym(V)
such that @ is smooth, of moderate growth and satisfies
@ If y € Sping(Z) and g € Sping(R) then @ (yg) = ®(g).
@ If k€ K and g € Sping(R) then ®(gk) = k~'d(g).

@ The function @ satisfies a specific differential equation D,® = 0.
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Modular Forms on Sping.

@ Let Sping — SOg be the simply connected split group of type D..
@ Let K be a maximal compact subgroup of Sping(R).

@ K contains a distinguished normal copy of H! ~ SU(2).

@ Get a 3-dimensional K-representation on V := Lie(H') ® C.

Let M,(Sping(Z)) denote the space of functions

®: Sping(R) — Sym(V)
such that @ is smooth, of moderate growth and satisfies
@ If y € Sping(Z) and g € Sping(R) then @ (yg) = ®(g).
@ If k€ K and g € Sping(R) then ®(gk) = k~'d(g).

@ The function @ satisfies a specific differential equation D,® = 0.

@ @ is Z(sping(C))-finite.




Let P, = M;,N,, be a parabolic associated a central node in .—<

«4O0>» «Fr «=Hr «E)»
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The Heisenberg Parabolic P,

Let P, = M;N, be a parabolic associated a central node in ’—<
@ The Levi-factor M, < P, satisfies M

SL2 X SL2 X SL2.

DA
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The Heisenberg Parabolic P,

Let P, = M, N, be a parabolic associated a central node in F< .
@ The M), < Py satisfies M = SL, x SL, x SL,.

1
@ [f J is the quadratic form with Gram matrix J = ( ) € Mg then
1

Ny, =~ Lo N SO(J).
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The Heisenberg Parabolic P,

Let P, = M, N, be a parabolic associated a central node in F< .
@ The M), < Py satisfies M = SL, x SL, x SL,.

1
@ [f J is the quadratic form with Gram matrix J = ( ) € Mg then
1

L E ok kR
2 ke ok ok ok
* %

Ny, =~ Lo N SO(J).

6]

@ N, is non-abelian with one dimensional center Z = [N, N;].
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The Heisenberg Parabolic P,
Let P, = M, N, be a parabolic associated a central node in F< .

@ The M), < Py satisfies M = SL, x SL, x SL,.

1
@ [f J is the quadratic form with Gram matrix J = ( ) € Mg then
1

Ny, =~ I o N SO(J).

@ N, is non-abelian with one dimensional center Z = [N, N;].

@ As a M{*(Z)-module, the character lattice of N,(Z)\N,(R) is

Hom(N,,(Z)\N,(R),C*) = Z* ® Z* ® 7.
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The Fourier Expansion of Modular Forms on Sping

Let ® € M,(Sping(Z)) and U < Sping be a unipotent subgroup.
@ The constant term of ® along U is

Dy (g) = D(ug) du.

JU(Z)\U(R)
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The Fourier Expansion of Modular Forms on Sping

Let ® € M,(Sping(Z)) and U < Sping be a unipotent subgroup.
@ The constant term of ® along U is

Dy (g) = D(ug) du.

L(Z)\U(R)
Theorem (Gross-Wallach 96’, Weissman 04’, Pollack 20°)
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The Fourier Expansion of Modular Forms on Sping

Let ® € M,(Sping(Z)) and U < Sping be a unipotent subgroup.
@ The constant term of ® along U is

Dy (g) = D(ug) du.

L(Z)\U(R)
Theorem (Gross-Wallach 96’, Weissman 04’, Pollack 20°)
The constant term ®(g) Fourier expands along (Z(R)N,(Z))\Nx(R) as

Dz(g) = D, (g) + Z Ao[B]Wpg(g).

BeZ?®2*®7Z> — {0}
such that det(B) = 0
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The Fourier Expansion of Modular Forms on Sping

Let ® € M,(Sping(Z)) and U < Sping be a unipotent subgroup.
@ The constant term of ® along U is

Dy (g) = D(ug) du.

L(Z)\U(R)
Theorem (Gross-Wallach 96’, Weissman 04’, Pollack 20°)
The constant term ®(g) Fourier expands along (Z(R)N,(Z))\Nx(R) as

Dz(g) = Py, (8) + > Ao[B]Wpg(g).
BeZ?®2*®7Z> — {0}
such that det(B) = 0

@ The Fourier Coefficient A|B] € C satisfies the symmetry

Ao[B+y] = Ao[B], BeZ’Q®7*®Z%yeSL,y(Z).
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The Fourier Expansion of Modular Forms on Sping

Let ® € M,(Sping(Z)) and U < Sping be a unipotent subgroup.
@ The constant term of ® along U is

Dy (g) = D(ug) du.

L(Z)\U(R)
Theorem (Gross-Wallach 96’, Weissman 04’, Pollack 20°)
The constant term ®(g) Fourier expands along (Z(R)N,(Z))\Nx(R) as

Dz(g) = Py, (8) + > Ao[B]Wpg(g).
BeZ*®7> ®Z? — {0}
such that det(B) = 0

@ The Fourier Coefficient A|B] € C satisfies the symmetry

Ao[B+y] = Ao[B], BeZ’Q®7*®Z%yeSL,y(Z).

@ For B # 0, Wp(g): Sping(R) — Sym’(V) is an explicit function,
which depends on ¢ and B, and is otherwise independent of ®.




Some Bhargavology

@ Let W = 7> ® Z> ® Z? be the space of 2 x 2 x 2 integral matrices
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Some Bhargavology

@ Let W = 7> ® Z*> ® Z?* be the space of 2 x 2 x 2 integral matrices

@ M{*(Z) = SL,(Z)’ acts on W preserving the invariant

det(B) := 4(ad — bc)(eh — fg) — (ah + ed — bg — fc)*.
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Some Bhargavology

@ Let W = 7> ® Z*> ® Z?* be the space of 2 x 2 x 2 integral matrices

@ M{*(Z) = SL,(Z)’ acts on W preserving the invariant
det(B) := 4(ad — bc)(eh — fg) — (ah + ed — bg — fc)*.

@ Slicing the cube B, we obtain a pair of 2 x 2 integral matrices

a b e f
e ) - D)
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Some Bhargavology

@ Let W = 7> ® Z*> ® Z?* be the space of 2 x 2 x 2 integral matrices

@ M{*(Z) = SL,(Z)’ acts on W preserving the invariant
det(B) := 4(ad — bc)(eh — fg) — (ah + ed — bg — fc)*.
@ Slicing the cube B, we obtain a pair of 2 x 2 integral matrices
_fa b (e f
o= () wom 6 3)
@ Then 4det(T(B)) = det(B) where T(B) € (Sym” Z?)* is defined as
T(B) = det(xMB — yNB)



@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.

«O0>» «F»r « =>»
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if

Q-span{Mg, Np} N Mz(Z) = Z-span{Mg, Ng}.
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O

(a) If Ao[B] = 0 for all primitive B € W~ then ® = 0.
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O

(a) If Ao[B] = 0 for all primitive B € W~ then ® = 0.
(b) Let ® be cuspidal. Then ® = 0 iff Ao[B] = 0V s-primitive B € W-~,.
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O

(a) If Ao[B] = 0 for all primitive B € W~ then ® = 0.
(b) Let ® be cuspidal. Then ® = 0 iff Ao[B] = 0V s-primitive B € W-~,.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24’)
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O

(a) If Ao[B] = 0 for all primitive B € W~ then ® = 0.
(b) Let ® be cuspidal. Then ® = 0 iff Ao[B] = 0V s-primitive B € W-~,.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24’)

Let ® € M,(SOg(Z)) be a cuspidal quaternionic modular on SOg. TFAE
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O

(a) If Ao[B] = 0 for all primitive B € W~ then ® = 0.
(b) Let ® be cuspidal. Then ® = 0 iff Ao[B] = 0V s-primitive B € W-~,.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24’)

Let ® € M,(SOg(Z)) be a cuspidal quaternionic modular on SOg. TFAE
o O is the theta lift of an element in M;(Sp,(Z)).
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Zagier’'s Theorem in Type Dy

@ Say B € W\{0} is primitive if Q-span{B} n W = Z-span{B}.
@ Say B € W\{0} is slice or s-primitive if
Q-span{Mpg, Ng} n M(Z) = Z-span{Mp, Np}.
Theorem (M. 25)
Let ® € M,(Sping(Z)) and set W= = {B € W\{0}: det(B) = 0} so that

Dz(g) = Dy, (8) + Y, Ao[BIWs(g).

BEW;O

(a) If Ao[B] = 0 for all primitive B € W~ then ® = 0.
(b) Let ® be cuspidal. Then ® = 0 iff Ao[B] = 0V s-primitive B € W-~,.

Application (Johnson-Leung, M., Negrini, Pollack, Roy 24’)

Let ® € M,(SOg(Z)) be a cuspidal quaternionic modular on SOg. TFAE
o O is the theta lift of an element in M;(Sp,(Z)).
e If B & B’ are s-primitive with 7(B) = T(B’) then A¢[B] = A¢[B’].

v




o Siegel Modular Forms and Zagier’s Theorem

@ Quaternionic Modular Forms on Spin(8)

e The Fourier-Jacobi Expansion on Spin(8)
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Orthogonal Fourier-Jacobi Expansion of D, Modular Forms

e P, = M,N, the parabolic associated to an outer node in ’—<
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Orthogonal Fourier-dJacobi Expansion of D4 Modular Forms

e P, = M,N, the parabolic associated to an outer node in F<

1% -0 % %
*

o M) = Sping & N, ~ I N SO(J) is abelian.
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Orthogonal Fourier-dJacobi Expansion of D4 Modular Forms

e P, = M,N, the parabolic associated to an outer node in F< .

1% -0 % %
*

o M = Sping & N, ~ I : | nSO(J)is abelian.
*
1

o If (Vg,(:,-)) is the split quadratic space of dimension 6 then

Vs(Z) = Hom(No(Z)\No(R),C*),  y=xy
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Orthogonal Fourier-dJacobi Expansion of D4 Modular Forms

e P, = M,N, the parabolic associated to an outer node in F< .

1% -0 % %
*

o M = Sping & N, ~ I : | nSO(J)is abelian.
*
1

o If (Vg,(:,-)) is the split quadratic space of dimension 6 then

V6(Z) = Hom(No(Z)\No(R),C*).  y Xy
o For ® € M,(Sping(Z)), define 7 (®): Sping(R) — Sym‘(V) as

F3(@)(g) =

-| (ng)iy () dn
No(Z)\N, (R)
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Orthogonal Fourier-dJacobi Expansion of D4 Modular Forms

e P, = M,N, the parabolic associated to an outer node in F< .

1% -0 % %
*

o M = Sping & N, ~ I : | nSO(J)is abelian.
*
1

o If (Vg,(:,-)) is the split quadratic space of dimension 6 then

V6(Z) = Hom(No(Z)\No(R),C*).  y Xy
o For ® € M,(Sping(Z)), define 7 (®): Sping(R) — Sym‘(V) as

F3(@)(g) =

-| (ng)iy () dn
No(Z)\N, (R)

Proposition (M. 25’)

An element ® € M,(Sping(Z)) Fourier expands along N,(Z)\N,(R) as

D(g) = Dw,(g) + > Fy(@)(g)-

¥ € V6(Z)\{0}: (3> =0
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Orthogonal Fourier-Jacobi Expansion: Non Degenerate Terms

e Recall ® € M,(Sping(Z)) has Fourier-Jacobi expansion

D(g) = Dy, (g) + > F(®)(g)
YEV6(Z)—{0}: {3y»=0

Lety € Vi(Z) satisfy (y,y) > 0, and H, ~ Sp, equal Stabspin (7).
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Orthogonal Fourier-Jacobi Expansion: Non Degenerate Terms

e Recall ® € M,(Sping(Z)) has Fourier-Jacobi expansion

D(g) = Dy, (g) + > F(®)(g)
YEV6(Z)—{0}: {3y»=0

Lety € Vs(Z) satisfy (y,y) > 0, and H, ~ Sp, equal Stabgy, ().

Proposition (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)
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Orthogonal Fourier-Jacobi Expansion: Non Degenerate Terms

e Recall ® € M,(Sping(Z)) has Fourier-Jacobi expansion

D(g) = Dy, (g) + > F(®)(g)
YEV6(Z)—{0}: {3y»=0

Lety € Vs(Z) satisfy (y,y) > 0, and H, ~ Sp, equal Stabgy,_(y)-

Proposition (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

(i) There exists a non-zero linear functional L: Sym‘(V) — C and an
element g, € Sping(R) such that if ® € M,(Sping(Z)) then the function

&: Hy(R) = C,  &(h) := L(F,(D)(hgy))

is a weight ¢ holomorphic modular form on H,(Z) := H,(Q) n Sping(Z).
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Orthogonal Fourier-Jacobi Expansion: Non Degenerate Terms

e Recall ® € M,(Sping(Z)) has Fourier-Jacobi expansion

D(g) = Dy, (g) + > F(®)(g)
YEV6(Z)—{0}: {3y»=0

Lety € Vs(Z) satisfy (y,y) > 0, and H, ~ Sp, equal Stabgy,_(y)-

Proposition (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

(i) There exists a non-zero linear functional L: Sym‘(V) — C and an
element g, € Sping(R) such that if ® € M,(Sping(Z)) then the function

& Hy(R) = C, &(h) = L(F,(D)(hgy))
is a weight ¢ holomorphic modular form on H,(Z) := H,(Q) n Sping(Z).

(i) We have the implication

& =0— F, (D) =0.




Reduction to the Case of Holomorphic Modular Forms |

Let N, be the unipotent radical of a Siegel parabolic in H, ~ Sp,.
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Reduction to the Case of Holomorphic Modular Forms |

Let N, be the unipotent radical of a Siegel parabolic in H, ~ Sp,.

Lemma (M. 25’)
Let ¢ be a weight ¢ > 0 modular form on H,(Z) with Fourier coefficients

Acly] = f £(m)e(n)dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\N,(R)

If A¢[x] = O for all primitive y € Hom(N,(Z)\N,(R),C*) then ¢ = 0.
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Reduction to the Case of Holomorphic Modular Forms |

Let N, be the unipotent radical of a Siegel parabolic in H, ~ Sp,.

Lemma (M. 25’)
Let ¢ be a weight ¢ > 0 modular form on H,(Z) with Fourier coefficients

Acly] = f £(m)e(n)dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\N,(R)

If A¢[x] = O for all primitive y € Hom(N,(Z)\N,(R),C*) then ¢ = 0.

Let ® € M,(Sping(Z)) and y € Vs(Z)\{0} satisfy (y,y) > 0.
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Reduction to the Case of Holomorphic Modular Forms |

Let N, be the unipotent radical of a Siegel parabolic in H, ~ Sp,.

Lemma (M. 25’)
Let ¢ be a weight ¢ > 0 modular form on H,(Z) with Fourier coefficients

Acly] = f £(m)e(n)dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\N,(R)

If A¢[x] = O for all primitive y € Hom(N,(Z)\N,(R),C*) then ¢ = 0.

Let ® € M,(Sping(Z)) and y € Vs(Z)\{0} satisfy (y,y) > 0.

¢ The primitive Fourier coefficients of &, are given by finite sums of
Fourier coefficients Aq[B] where B is primitive.
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Reduction to the Case of Holomorphic Modular Forms |

Let N, be the unipotent radical of a Siegel parabolic in H, ~ Sp,.

Lemma (M. 25’)
Let ¢ be a weight ¢ > 0 modular form on H,(Z) with Fourier coefficients

Acly] = f £(m)e(n)dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\N,(R)

If A¢[x] = O for all primitive y € Hom(N,(Z)\N,(R),C*) then ¢ = 0.

Let ® € M,(Sping(Z)) and y € Vs(Z)\{0} satisfy (y,y) > 0.

¢ The primitive Fourier coefficients of &, are given by finite sums of
Fourier coefficients A¢[B] where B is primitive.

e Therefore, under the hypothesis that Aq[B] = 0 for all primitive B,
the primitive Fourier coefficients of &, vanish. Hence, &, = 0.
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Reduction to the Case of Holomorphic Modular Forms |

Let N, be the unipotent radical of a Siegel parabolic in H, ~ Sp,.

Lemma (M. 25’)
Let ¢ be a weight ¢ > 0 modular form on H,(Z) with Fourier coefficients

Acly] = f £(m)e(n)dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\N,(R)

If A¢[x] = O for all primitive y € Hom(N,(Z)\N,(R),C*) then ¢ = 0.

Let ® € M,(Sping(Z)) and y € Vs(Z)\{0} satisfy (y,y) > 0.

¢ The primitive Fourier coefficients of &, are given by finite sums of
Fourier coefficients A¢[B] where B is primitive.

e Therefore, under the hypothesis that Aq[B] = 0 for all primitive B,
the primitive Fourier coefficients of &, vanish. Hence, &, = 0.

@ Therefore, part (i) of the previous proposition implies 7,(®) = 0.
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Orthogonal Fourier-Jacobi Expansion: Degenerate Terms

e Recall ® € M,(Sping(Z)) Fourier Jacobi expands as

D(g) = D, (g) + > Fy(®)(2)

YEV6(Z)—{0}: {v.y»=0
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Orthogonal Fourier-Jacobi Expansion: Degenerate Terms

e Recall ® € M,(Sping(Z)) Fourier Jacobi expands as

D(g) = Dy, (g) + > Fy(®)(2)

YEV6(Z)—{0}: {v.y»=0

e It remains to analyze the coefficients ¥, (®) for isotropic y € Vi (Z).
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Orthogonal Fourier-Jacobi Expansion: Degenerate Terms

e Recall ® € M,(Sping(Z)) Fourier Jacobi expands as

D(g) = Dy, (g) + > Fy(®)(2)

YEV6(Z)—{0}: {v.y»=0

e It remains to analyze the coefficients ¥, (®) for isotropic y € Vi (Z).

Lemma (M. 25’)
Lety € Vs(Z) — {0} be isotropic.
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Orthogonal Fourier-Jacobi Expansion: Degenerate Terms

e Recall ® € M,(Sping(Z)) Fourier Jacobi expands as

D(g) = Dy, (g) + > Fy(®)(2)

YEV6(Z)—{0}: {v.y»=0

e It remains to analyze the coefficients ¥, (®) for isotropic y € Vi (Z).

Lemma (M. 25’)

Lety € Vs(Z) — {0} be isotropic. There exists y € M%*(Z) = Sping(Z)
such that if y' = y - y then the Fourier Jacobi coefficient

T () (g) 1= f (g () dn

No(Z)\N, (R)

factors across the constant term @y, (g).
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Orthogonal Fourier-Jacobi Expansion: Degenerate Terms

e Recall ® € M,(Sping(Z)) Fourier Jacobi expands as

D(g) = Dy, (g) + > Fy(®)(2)

YEV6(Z)—{0}: {v.y»=0

e It remains to analyze the coefficients ¥, (®) for isotropic y € Vi (Z).

Lemma (M. 25’)

Lety € Vs(Z) — {0} be isotropic. There exists y € M%*(Z) = Sping(Z)
such that if y' = y - y then the Fourier Jacobi coefficient

T () (g) 1= f (g () dn

No(Z)\N, (R)

factors across the constant term ®y, (g). In particular, to establish the
vanishing on ¥ (®), it suffices to show that ®y, = 0.
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Orthogonal Fourier-Jacobi Expansion: Degenerate Terms

e Recall ® € M,(Sping(Z)) Fourier Jacobi expands as

D(g) = Dy, (g) + > Fy(®)(2)

YEV6(Z)—{0}: {v.y»=0

e It remains to analyze the coefficients ¥, (®) for isotropic y € Vi (Z).

Lemma (M. 25’)

Lety € Vs(Z) — {0} be isotropic. There exists y € M%*(Z) = Sping(Z)
such that if y' = y - y then the Fourier Jacobi coefficient

T () (g) 1= f (g () dn

No(Z)\N, (R)

factors across the constant term ®y, (g). In particular, to establish the
vanishing on ¥ (®), it suffices to show that ®y, = 0.

This concludes the proof of part (a) of our main theorem for ® cuspidal .



= SL;.

Let ® € M,(Sping(Z)), write U = {(} ) : x € R}, and recall M
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Analysis of the Constant Term @y,

Let @ € M,(Sping(Z)), write U = {(} 1) : x € R}, and recall M{*" = SL;.
Theorem (Pollack 20°)

There exists a non-zero linear functional L: Sym‘(V) — C such that if
® € M,(Sping(Z)) is such that @y, # 0 then the function

¢: My"(R) > C, (g) = L(®n,(g))
is a non-zero weight (¢, ¢, ¢) holomorphic modular form on SL,(Z)?.
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Analysis of the Constant Term @y,

Let @ € M,(Sping(Z)), write U = {(} 1) : x € R}, and recall M{*" = SL;.
Theorem (Pollack 20°)

There exists a non-zero linear functional L: Sym’(V) — C such that if
® € M,(Sping(Z)) is such that @y, # 0 then the function

¢: My"([R) > C,  ¢(g) = L(®n,(8))
is a non-zero weight (¢, ¢, ¢) holomorphic modular form on SL,(Z)?.

In classical notation the modular form ¢ admits a g-expansion

¢(Zl , 22, Z3) — 2 aqﬁ(”l, n, n3)627ri(n1Z1 +mz2+n3z3)

ny,n,n3 =0
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Analysis of the Constant Term @y,

Let @ € M,(Sping(Z)), write U = {(} 1) : x € R}, and recall M{*" = SL;.
Theorem (Pollack 20°)

There exists a non-zero linear functional L: Sym’(V) — C such that if
® € M,(Sping(Z)) is such that @y, # 0 then the function

¢: My"([R) > C,  ¢(g) = L(®n,(8))
is a non-zero weight (¢, ¢, ¢) holomorphic modular form on SL,(Z)?.

In classical notation the modular form ¢ admits a g-expansion

¢(Zl , 22, Z3) = 2 aqﬁ(”l, n, n3)627ri(n1Z1 +nyz24n323)

ny,n,n3 =0

Proposition (M. 25’)

Ifn := (ni,n,n3) # 0 then ay(n)is a finite sum of
Fourier coefficients Ao[B] where B is of the form
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

¢(Zl, 2, ZS) = Z a¢(n1, ny, n3)62ﬂi(n111 +nz2+n3z3)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

¢(Zl, 2, ZS) = Z a¢(n1, ny, n3)62ﬂi(n111 +nz2+n3z3)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.

Let ® € M,(Sping(Z)) be such that Aq[B] = 0 for all primitive B.
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

é(21,22,23) = Z ag(ny,ny, n3)€2"i(n'm+nzzz+nm)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.

Let ® € M,(Sping(Z)) be such that Aq[B] = 0 for all primitive B.

e By the previous proposition, the primitive Fourier coefficients of ¢
are finite sums of Fourier coefficients A¢[B] where B is primitive.
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

é(21,22,23) = Z ag(ny,ny, n3)€2"i(n'm+nzzz+nm)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.

Let ® € M,(Sping(Z)) be such that Aq[B] = 0 for all primitive B.

e By the previous proposition, the primitive Fourier coefficients of ¢
are finite sums of Fourier coefficients A¢[B] where B is primitive.

e Therefore, by the above lemma ¢ = 0, and thus @y, = 0.
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

é(21,22,23) = Z ag(ny,ny, n3)€2"i("'m+nzzz+nm)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.

Let ® € M,(Sping(Z)) be such that Aq[B] = 0 for all primitive B.

e By the previous proposition, the primitive Fourier coefficients of ¢
are finite sums of Fourier coefficients A¢[B] where B is primitive.

e Therefore, by the above lemma ¢ = 0, and thus @y, = 0.

e Hence, 7,(®) = 0 for all y € V5(Z)\{0} such that (y,y) = 0.
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

é(21,22,23) = Z ag(ny,ny, n3)€2"i("'m+nzzz+nm)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.

Let ® € M,(Sping(Z)) be such that Aq[B] = 0 for all primitive B.

e By the previous proposition, the primitive Fourier coefficients of ¢
are finite sums of Fourier coefficients A¢[B] where B is primitive.

e Therefore, by the above lemma ¢ = 0, and thus @y, = 0.
e Hence, 7,(®) = 0 for all y € V5(Z)\{0} such that (y,y) = 0.

o Therefore, ® = ®y, is left N,(R)-invariant.
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Conclusion to the Proof of Statement (a)

Lemma (M. 25’)
Suppose ¢ > 0 and let ¢ € M(; ¢ (SL2(Z)*) with Fourier Expansion

é(21,22,23) = Z ag(ny,ny, n3)€2"i("'m+"zzz+nm)

ny,ng,n3 =0

If ag(n1,na,n3) = O for all jointly coprime (ny,n2,n3) € Z° then ¢ = 0.

Let ® € M,(Sping(Z)) be such that Aq[B] = 0 for all primitive B.

e By the previous proposition, the primitive Fourier coefficients of ¢
are finite sums of Fourier coefficients A¢[B] where B is primitive.

e Therefore, by the above lemma ¢ = 0, and thus @y, = 0.
e Hence, 7,(®) = 0 for all y € V5(Z)\{0} such that (y,y) = 0.

o Therefore, ® = ®y, is left N, (R)-invariant. However, since
Sping(R) = (N,(R), Sping(Z)), it follows that @ is zero.
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
In particular, ® = 0 provided Ag[B] = 0 for all Be W-y.
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
In particular, ® = 0 provided Ag[B] = 0 for all Be W-y.

@ Fory e V5(Z)\{0} such that {y,y) > 0, recall the Fourier coefficients

Acly] = J &,(mx(m) dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\Ny (R)
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
In particular, ® = 0 provided Ag[B] = 0 for all Be W-y.

@ Fory e V5(Z)\{0} such that {y,y) > 0, recall the Fourier coefficients

Acly] = J &,(mx(m) dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\Ny (R)

(i) fBe W= is , then there exists a primitive y € V(Z)
satisfying {y,y) > 0, and a character y, such that A; [x] = Ao[B].
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
In particular, ® = 0 provided Ag[B] = 0 for all Be W-y.

@ Fory e V5(Z)\{0} such that {y,y) > 0, recall the Fourier coefficients

Acly] = J &,(mx(m) dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\Ny (R)

(i) fBe W= is , then there exists a primitive y € V(Z)
satistying {y,y) > 0, and a character y, such that A¢ [x] = Ao[B].

(i) Lety e Vs(Z) be primitive with (y,y) > 0. If y is primitive, then
there exists an s-primitive B € W~ such that A [x] = Ao[B].
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
In particular, ® = 0 provided Ag[B] = 0 for all Be W-y.

@ Fory e V5(Z)\{0} such that {y,y) > 0, recall the Fourier coefficients

Acly] = J &,(mx(m) dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\Ny (R)

(i) fBe W= is , then there exists a primitive y € V(Z)
satistying {y,y) > 0, and a character y, such that A¢ [x] = Ao[B].

(i) Lety e Vs(Z) be primitive with (y,y) > 0. If y is primitive, then
there exists an s-primitive B € W~ such that A [x] = Ao[B].

e Assuming the s-primitive Fourier coefficients of @ vanish, (i)
implies that &, = 0 for all primitive y € V(Z) satisfying (y,y) > 0.
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Conclusion to the Proof of Statement (b)

Lemma (Johnson-Leung, M., Negrini, Pollack, Roy 24’, M. 25’)

Suppose @ is cuspidal. If B € W~ satisfies det(B) = 0 then Ag[B] = 0.
In particular, ® = 0 provided Ag[B] = 0 for all Be W-y.

@ Fory € V5(Z)\{0} such that {y,y) > 0, recall the Fourier coefficients

Acly] = J &,(mx(m) dn, x € Hom(N,(Z)\N,(R),C¥).
Ny (Z)\Ny (R)

(i) fBe W= is , then there exists a primitive y € V(Z)
satistying {y,y) > 0, and a character y, such that A¢ [x] = Ao[B].

(i) Lety e Vs(Z) be primitive with (y,y) > 0. If y is primitive, then
there exists an s-primitive B € W~ such that A [x] = Ao[B].

e Assuming the s-primitive Fourier coefficients of @ vanish, (i)
implies that &, = 0 for all primitive y € V(Z) satisfying (y,y) > 0.
e Applying (i), we conclude that Ag[B] = 0 for all B € W~y.
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