1(a) If X and Y are topological spaces, let $\mathcal{C}(X,Y)$ be the set of continuous maps from X to Y. Give the definition of the compact-open topology on $\mathcal{C}(X,Y)$ by giving a subbasis.

(b) Now suppose that X is locally compact and Hausdorff, and give $\mathcal{C}(X,Y)$ the compact-open topology. Define the evaluation map $e: X \times \mathcal{C}(X,Y) \to Y$ by the formula $e(x,f) = f(x)$. Prove that this map is continuous.

[Hint: recall that X locally compact implies that for every open neighborhood U of x, there is an open neighborhood U with $\overline{U} \subset W$ and \overline{U} compact.]

Solution.

(A) For each compact set $C \subset X$ and open set $U \subset Y$ let

$$S(C,U) = \{ f \in \mathcal{C}(X,Y) \mid f(C) \subset U \}.$$

The set of all such sets $S(C,U)$ is a subbasis for the compact-open topology on $\mathcal{C}(X,Y)$.

(b) Let (x,f) be a point in $X \times \mathcal{C}(X,Y)$ and $V \subset Y$ a neighborhood of $e(x,f)$. We need to find a neighborhood of (x,f) that is mapped by e into V.

Since f is continuous and $f(x) \in V$, the set $W = f^{-1}(V)$ is an open neighborhood of x in X. By local compactness and the Hausdorff property, there is a neighborhood U of x such that $\overline{U} \subset W$ and \overline{U} is compact. Now $U \times S(\overline{U},V)$ is an open neighborhood of (x,f) since $f(\overline{U}) \subset V$. Also, any $(x',f') \in U \times S(\overline{U},V)$ is mapped to V by e, since $x' \in U$ and f' takes U into V.

2(a) Define what it means for $r: X \to A$ to be a retraction, where A is a subspace of X.

(b) Let $i: A \to X$ be inclusion and let $r: X \to A$ be a retraction, and pick a basepoint $a_0 \in A$. Show that the induced homomorphism $i_*: \pi_1(A,a_0) \to \pi_1(X,a_0)$ is injective.

(c) Show that there is no retraction of the “solid torus” $S^1 \times D^2$ to the boundary torus $S^1 \times S^1$.

Solution.

(A) r is a retraction if r is continuous and $r(a) = a$ for all $a \in A$.

(b) The retraction property means that $r \circ i$ is the identity map on A. Hence, $(r \circ i)_* = (i \circ r)_* = (id)_* = id$, the identity homomorphism on $\pi_1(A,a_0)$. In particular, this composition is a bijection, and it follows that i_* is injective and r_* is surjective.

(c) We know that $\pi_1(S^1) \cong \mathbb{Z}$ and $\pi_1(D^2) \cong 1$, and therefore $\pi_1(S^1 \times S^1) \cong \mathbb{Z} \times \mathbb{Z}$ and $\pi_1(S^1 \times D^2) \cong \mathbb{Z} \times 1 \cong \mathbb{Z}$. By part (b), if there is a retraction then there will be a corresponding injective homomorphism $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$. However, this is impossible. For instance, if $(1,0)$ and $(0,1)$ map to m and n respectively, then $(n,0)$ and $(0,m)$ both map to mn.

3. Let $p: E \to B$ be a covering map. Choose $e_0 \in E$ and $b_0 \in B$ such that $p(e_0) = b_0$.

(a) Define the lifting correspondence $\Phi: \pi_1(B,b_0) \to p^{-1}(b_0)$.
(b) Show that \(\Phi \) is surjective, and that \(\Phi \) is injective if \(E \) is simply connected. State carefully any results that you use.

Solution. Note, we should also assume that \(E \) is path connected.

(A) For each \([f] \in \pi_1(B, b_0)\) let \(\tilde{f} \) be the unique lift of \(f \) starting at \(e_0 \). Then \(\Phi([f]) = \tilde{f}(1) \). This is well defined because if \([f] = [g] \) then any path homotopy from \(f \) to \(g \) lifts to a path homotopy from \(\tilde{f} \) to \(\tilde{g} \), showing that \(\tilde{f} \) and \(\tilde{g} \) have the same endpoints in \(p^{-1}(b_0) \).

(b) For surjectivity, suppose \(e_1 \in p^{-1}(b_0) \). Since \(E \) is path connected, there is a path \(\tilde{f} \) from \(e_0 \) to \(e_1 \). Then \(f \) is a lift of the loop \(f = p \circ \tilde{f} \), and it starts at \(e_0 \), and therefore \(e_1 = \tilde{f}(1) = \Phi([f]) \).

For injectivity, suppose \(\Phi([f]) = \Phi([g]) = e_1 \in p^{-1}(b_0) \). The lifts \(\tilde{f} \) and \(\tilde{g} \) (of \(f \) and \(g \) respectively, starting at \(e_0 \)) are paths in \(E \) from \(e_0 \) to \(e_1 \). Since \(E \) is simply connected, there is a path homotopy \(F \) from \(\tilde{f} \) to \(\tilde{g} \). Then \(p \circ F \) is a path homotopy from \(f \) to \(g \), and therefore \([f] = [g] \).

4. Let \(h: I \to X \) be a path from \(x_0 \) to \(x_1 \).

(a) Give the definition of the change-of-basepoint homomorphism \(\beta_h: \pi_1(X, x_1) \to \pi_1(X, x_0) \). [Or, in Munkres notation, the homomorphism \(\tilde{h}: \pi_1(X, x_0) \to \pi_1(X, x_1) \).]

(b) Prove that \(\beta_h \) (or \(\tilde{h} \)) is a homomorphism, and an isomorphism.

Solution. (the For Munkres version see Theorem 52.1.)

(A) We define \(\beta_h([f]) = [h \cdot f \cdot \tilde{h}] \). This is well defined because \([h \cdot f \cdot \tilde{h}] = [h][f][\tilde{h}] \) and multiplication of path homotopy classes is well defined.

(b) First, \(\beta_h([f]) \beta_h([g]) = [h \cdot f \cdot \tilde{h}][h \cdot g \cdot \tilde{h}] = [h][f][\tilde{h}][h][g][\tilde{h}] = [h][f][g][\tilde{h}] = [h \cdot f \cdot g \cdot \tilde{h}] = \beta_h([f \cdot g]) = \beta_h([f])[g] \), and so \(\beta_h \) is a homomorphism. Next we claim that \(\beta_h^{-1} \) and \(\beta_h \) are inverse homomorphisms (and therefore are isomorphisms). We verify: \(\beta_h(\beta_h^{-1}([f])) = [h \cdot \tilde{h} \cdot f \cdot h \cdot \tilde{h}] = [f] \) and \(\beta_h^{-1}(\beta_h([f])) = [\tilde{h} \cdot h \cdot f \cdot \tilde{h} \cdot h] = [f] \).

5. Let \(p: E \to B \) be a covering map with \(B \) connected. Show that if \(p^{-1}(b_0) \) has \(k \) elements for some \(b_0 \in B \) then \(p^{-1}(b) \) has \(k \) elements for every \(b \in B \).

Solution.

Define sets \(A \subset B \) and \(C \subset B \) as follows: \(A = \{ b \in B \mid |p^{-1}(b)| = k \} \) and \(C = \{ b \in B \mid |p^{-1}(b)| \neq k \} \). Clearly \(A \cap C = \emptyset \) and \(A \cup C = B \). We claim that \(A \) and \(B \) are both open sets.

If \(b \in A \) then there is an evenly covered neighborhood \(U \) of \(b \). Then \(p^{-1}(U) \cong V_1 \cup \cdots \cup V_k \), with each slice \(V_i \) mapping by \(p \) homeomorphically onto \(U \). There are \(k \) slices, because \(p^{-1}(b) \) has \(k \) elements, and it contains one element of each slice. The same is true of any \(b' \in U \), and therefore \(U \subset A \).

If \(b \in C \) then an evenly covered neighborhood \(U \) of \(b \) has preimage equal to the union of a collection of slices, having the same cardinality as \(p^{-1}(b) \). Every fiber \(p^{-1}(b') \) has this same cardinality, which is not \(k \). Hence, \(U \subset C \).

Thus, \(A \) and \(C \) are open sets. Since \(A \) contains \(b_0 \) and \(B \) is connected, it must be the case that \(C = \emptyset \), and \(B = A \).