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Cluster algebras are a beautiful class of commutative rings with
extra combinatorial structure. However, before we see a general
definition, let’s motivate this structure with some examples.

Let’s go back to the dawn of math: Greek geometry!

Ptolemy’s theorem

Let A,B,C ,D be 4 distinct points inscribed on
a circle in cyclic order. The 6 distances between
these 4 points are related by

|AC | · |BD| = |AB| · |CD|+ |AD| · |BC |

A

B
C

D



Hence, we only need to measure five of the lengths to find them all.

Example

A

B
C

D

15

24

7

2025

|AC | =
|AB| · |CD|+ |AD| · |BC |

|BD|

=
7 · 20 + 24 · 15

25
= 20



Among n points on a circle, there are
(n
4

)
-many Ptolemy identities.

Now which measurements determine the rest?

A triangulation: a maximal non-crossing subset of edges

Example
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|CE | = ?

= 7·20·15+24·15·15+15·25·20
24·25

= 25
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Adjacent triangulations: differ in a single edge

Adjacent triangulations are related by a single Ptolemy formula.
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Any two triangulations are related by a sequence of adjacent ones.
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Next, consider the 2× 2 minors of a 2× n complex matrix A:

∀i < j , ∆ij := a1ia2j − a1ja2i

There are Plücker relations among these
(n
2

)
numbers:

∀i < j < k < l , ∆ik∆jl = ∆ij∆kl + ∆il∆jk

Example

A =

[
2 1 0 −1
2 3 1 0

] ∆13 =
∆12∆34 + ∆14∆23

∆24

=
4 · 1 + 2 · 1

3
= 2



Similar questions

Which minors of A determine the rest?

What are the relations between these sets of minors?

However, the answers are essentially the same as the first problem,
because the two sets of relations are formally equivalent!

{Ptolemy relations} ←→ {Plücker relations}

That is, any identity or formula derived from one set of relations
holds for the other set of relations.



We may study the Ptolemy/Plücker relations abstractly by
studying the commutative ring they define.

The cluster algebra of the n-gon

Define a commutative ring An generated by the variables

{aij | ∀i , j with 1 ≤ i < j ≤ n}
and with relations generated by

{aikajl = aijakl + ailajk | ∀i , j , k , l with i < j < k < l}

Any relation which holds in An gives a relation which holds for
distances between n points on a circle and minors of a 2×n matrix.



The generators {aij} can be identified with the edges in an n-gon.

A triangulation: a maximal non-crossing subset of {aij}
Does a triangulation determine the rest of An in an abstract sense?

Three equivalent questions:

If the variables in a triangulation T ⊂ {aij} take known
values, can the value of any a ∈ An be computed?

Can every element of An be written as a polynomial in T?

Does a triangulation T ⊂ {aij} generate An?

No, but yes in a weaker sense.
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The trick is to weaken the notion of ‘polynomial’.

A Laurent polynomial in T :=
a polynomial in T

a monomial in T

Theorem (Laurent phenomenon)

Given a triangulation T ⊂ {aij}, every element of An can be
written as a Laurent polynomial in T .

If the variables in T take known non-zero values, then the value of
any a ∈ An can be computed by evaluating a Laurent polynomial.



Adjacent triangulations: differ in a single element

The change of coordinates is given a simple Laurent expression:

new variable =
binomial

old variable
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Recap: Structures in An

The commutative ring An comes with the following data.

A special set of generators (the {aij}).

Many special subsets of those generators (the triangulations)
which ‘almost’ generate An, in that every element can be
written as a Laurent polynomial.

A simple relation for moving between two adjacent special
subsets (the Ptolemy/Plücker relations), which replaces a
single element with a binomial divided by the old element.



Cluster algebras: the idea

A cluster algebra is a commutative ring A with the following data.

A special set of generators (the cluster variables).

Many special subsets of those generators (the clusters) which
‘almost’ generate A, in that every element can be written as a
Laurent polynomial.

A simple relation for moving between two adjacent special
subsets (the mutation relations), which replaces a single
element with a binomial divided by the old element.



Cluster algebras frequently appear in the rings of functions on
interesting spaces. Call these the fundamental examples.

The fundamental examples [BFZ, GSV, FG, PS...]

Cluster algebras are functions on... Cluster variables are...

Spaces of matrices Mat(m, n) Determinants of minors
Grassmannians Gr(m, n) Plücker coordinates
Semisimple Lie groups G Generalized minors

Decorated Teichmüller spaces T̃ (Σ) Lambda lengths

Our old friend An comes from Gr(2, n), as well as the decorated
Teichmüller space of a disc with n marked points.



Cluster algebras are built from a seed, which intuitively is a single
cluster with extra information that tells it how to mutate.

A seed

A seed is...

a cluster: a finite set in a field (in fact, a
transcendence basis over Q);

which is identified with the vertices of a
quiver (a finite directed graph without
loops ( ) or 2-cycles ( )),

A seed

x1

x2 x3

x4x5



A seed can be mutated at any vertex.

Mutation at a vertex

x2 x3

x4x5

x1

x1

Add compositions
through vertex

x1

x2 x3

x4x5

Reverse arrows
touching vertex

x1

x2 x3

x4x5

Cancel 2-cycles

x1

x2 x3

x4x5

Replace xi by∏
xj←xi

xj +
∏

xj→xi

xj

xi

x2x4+x3x5
x1

x2 x3

x4x5

Two seeds connected by a sequence are mutation-equivalent.
Mutation-equivalent seeds live in the same field.
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Given a seed, we can consider all possible sequences of mutations,
and produce many clusters in the same field.

The cluster algebra of a seed

The cluster algebra A of a seed is the subring of the field
generated by the union of the clusters in mutation-equivalent seeds.

A cluster variables in A is an element of one of the seeds.

Infinite clusters

Most cluster algebras have infinitely many clusters and cluster
variables, but many are still finitely generated.

This makes an arbitrary cluster algebra very difficult to study
directly, without extra knowledge of a generating set.
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We never required that any cluster ‘almost generates’ A.

It’s not an axiom, but an important theorem.

Theorem (Laurent phenomenon [Fomin-Zelevinsky, 2001])

Given a cluster C = {x1, x2, ..., xn} in a cluster algebra A, every
element of A can be written as a Laurent polynomial in C . That is,

A ⊂ Z[x±11 , x±12 , ..., x±1n ]

So, an element a ∈ A can be written as a Laurent polynomial in
many different ways–one for each cluster in A.

Question

Does this characterize the elements of A inside the ambient field?

Answer: No in general, but yes in most fundamental examples.
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The set of elements satisfying the Laurent phenomenon is an
interesting algebra in its own right.

The upper cluster algebra

The upper cluster algebra U of a cluster algebra A is

U :=
⋂

clusters

{x1,...,xn}

Z[x±11 , x±12 , ..., x±1n ]

The Laurent phenomenon is equivalent to the inclusion A ⊆ U .

Better question

When does A = U?
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There is an curious dichotomy among general cluster algebras: they
are either very nice or very nasty, with no examples in between.

The following examples [BFZ ‘05] exemplify the general pattern.

Ex: Good behavior

A cluster algebra is acyclic if it
has a seed with no directed cycles.

If A is acyclic, then

A = U .

A is finitely generated.

A is normal.

A is a complete intersection.

Ex: Bad behavior

Let A be defined by the seed

x1

x2 x3

A 6= U .

A is infinitely generated.

A is not normal.†

A is non-Noetherian.

Most fundamental examples are well-behaved, but are not acyclic.



Question

Is there some simple, checkable property which distinguishes the
good cluster algebras from the bad ones?

I became fascinated in this in 2010 (via work on ‘skein algebras’).

To answer this question, I introduced locally acyclic cluster
algebras and helped develop their properties over a series of papers.

Project goals

Goal 1: Prove locally acyclic cluster algebras have all the
properties desired of ‘good’ cluster algebras.

Goal 2: Show that known examples of good cluster algebras
are locally acyclic.
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Idea: Find localizations of A which are acyclic cluster algebras.

Lemma [M, ‘12]

Let S be a subset of a seed such that
every directed cycle passes through S .

Then the localization A[S−1] is naturally
an acyclic cluster algebra.

Example

x1

x2

x3x4

A cover by localizations: the localizing sets generate 1

Locally acyclic cluster algebra (M, 2012)

A cluster algebra A is locally acyclic if it may be covered by
localizations of this form.



The properties of acyclic cluster alge-
bras listed before are local properties.†

As a direct consequence, they hold for
locally acyclic cluster algebras.

†Exception

‘Complete intersection’ is not
local, and must be weakened to
locally a complete intersection.

Theorem [M, 2012]

If A is a locally acyclic cluster algebra, then

A = U ,

A is finitely generated,

A is normal, and

A is locally a complete intersection.



Most fundamental examples have now been proven locally acyclic.

Theorem [M-Speyer, 2014]

The cluster algebras of Grassmannians are locally acyclic.
The cluster algebras of spaces of matrices are locally acyclic.
The cluster algebras of SL(n) and GL(n) are locally acyclic.

Theorem [M, 2012]

Given a marked surface with at least two marked points, the cluster
algebra of the decorated Teichmüller space is locally acyclic.



Algebraic geometry: consider the complex variety

V(A) := {homomorphisms A → C}
This is a complex manifold except at singularities, which local
techniques are well-suited to studying.

A cluster algebra is full-rank if the skew-adjacency matrix of the
quiver of any seed has non-zero determinant.

Theorem [M, 2012]

If A is a full-rank and locally acyclic, then V(A) is a C-manifold.



For general locally acyclics, V(A) may have singularities; however...

Theorem [Benito–M–Rajchgot–Smith, 2014]

If A is locally acyclic, V(A) has (at worst) canonical singularities.

A variety has canonical singularities if it has a resolution of
singularities with non-negative discrepancies.

Proof via reduction to positive characteristic

For a field k with char(k) = p > 2, the algebra k⊗A has a
Frobenius endomorphism

a 7→ ap

We prove this has a splitting which does not split any non-trivial
ideals. This implies k⊗A lacks ‘bad’ singularities for all k.



With the main goals of the program accomplished, what’s next?

Gross, Hacking, Keel and Kontsevich recently defined a conjectural
basis of theta functions in any cluster algebra (via MS for log CYs).

Problem

The construction involves formal series which may not converge.

Question

Do these formal series converge for locally acyclic cluster algebras?

A positive answer would provide a canonical basis in the coordinate
ring of many important varieties.


