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1. My research at a glance

My recent research has centered on the study of cluster algebras. These are commuta-
tive rings with a distinguished set of recursively-defined generators, called cluster variables.
Introduced by Fomin and Zelevinsky in [FZ02], they occur in the coordinate rings of a
remarkable number of important spaces–such as semisimple Lie groups, Grassmannians,
and decorated Teichmüller spaces. Cluster algebras have appeared in applications as var-
ied as discrete dynamical systems, representation theory, and scattering amplitudes in
Yang-Mills theory.

An unexpected feature of the theory is that cluster algebras tend to be well-behaved or
pathological, with a large gap in between. It is a significant problem in the field to find
a ‘missing axiom’, some additional property which eliminates the horrible examples while
containing the important ones. As a possible solution to this problem, I have introduced
locally acyclic cluster algebras and developed their properties over a series of papers.

• Locally acyclic cluster algebras can be covered (in a geometric sense) by certain
elementary cluster algebras [Mul13, Mul14].

• Locally acyclic cluster algebras are finitely generated [Mul13].
• The complex varieties associated to locally acyclic cluster algebras may be singular,

but their singularities must be canonical [BMRS14]. There is also a combinatorial
condition which implies smoothness [Mul13].

• Locally acyclic cluster algebras coincide with their upper cluster algebra, a closely
related algebra which arises in geometric applications [Mul13, Mul14].

In parallel, I have proven that many important examples of cluster algebras are locally
acyclic.

• A general linear group GL(n) has a finite stratification into locally closed subva-
rieties whose coordinate rings are locally acyclic cluster algebras [MS14].

• Analogously, a Grassmannian Gr(k, n) of k-planes in n-space has a finite strati-
fication into locally closed subvarieties whose coordinate rings are locally acyclic
cluster algebras [MS14].

• Given a triangulable marked surface, the lambda lengths on the associated deco-
rated Teichmüller space generate a locally acyclic cluster algebra, except for two
families of counterexamples [Mul13].

A number of techniques were developed in obtaining these results which are of independent
interest, including connections with geometry in positive characteristic [BMRS14], flows
in planar networks [MS14], and perfect matchings in graphs [MS].

Originally, I developed locally acyclic cluster algebras to study a non-commutative al-
gebra coming from knot theory. Given a real surface with boundary and marked points
on the boundary, I defined its skein algebra in [Mul12], generalizing an algebra of con-
siderable interest in knot theory. When the surface is triangulable and has more than two
marked points, a certain localization of the skein algebra is a quantum cluster algebra
[Mul12].1 The proof uses a non-commutative analog of locally acyclic cluster algebras.

In earlier research, I published results in invariant theory [MS11], integrable systems
[Mul11], and D-modules on varieties [Mul10], the latter being my thesis work. While there
are connections between this work and cluster algebras, I will not outline them here.

1A quantum cluster algebra is a special non-commutative deformation of a cluster algebra.
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Since last spring, much of my research has been exploring new techniques coming from
the work of Gross-Hacking-Keel-Kontsevich [GHKK]; specifically the conjectural basis of
theta functions in a cluster algebra. I am currently preparing papers on the following.

• At a Snowbird workshop, a group of 8 people including myself proved that the
theta basis of a rank 2 cluster algebra coincides with Sherman-Zelevinsky’s ‘greedy
basis’ [SZ04].

• I used the theory of theta functions to prove that the existence of a ‘maximal
green sequence’ for a quiver is not a mutation invariant, disproving a widely-held
expectation on the combinatorial side of cluster algebras.

One appealing aspect of this new theory is that theta basis is defined in terms of gener-
ating functions that count certain piecewise-linear curves inside a tropical variety. Hence,
with a few lemmas, deep questions about cluster algebras can be reduced to the kinds of
counting problems suitable for attack by a graduate student or gifted undergraduate.

2. A little bit about cluster algebras

A cluster algebraA is a commutative domain with a distinguished, possibly infinite set
of generators called cluster variables. There are distinguished sets of cluster variables,
called clusters, each of which is a transcendence basis of the fraction field Frac(A) of
A. Each cluster is also equipped with additional data (such as a quiver) that allows any
cluster to be reconstructed from any other cluster by a sequence of mutations.

2.1. The main examples. The most important examples of cluster algebras occur in
the rings of functions on many notable spaces. These include the original examples that
lead to the definition, as well as many surprising examples that have emerged since then.
Three of the most significant examples are provided below.

• A general linear group GL(n) admits a stratification into double Bruhat cells,
which roughly measure the failure of LU factorizations to exist. The coordinate
ring of each such cell is a cluster algebra, by [BFZ05] and [GY13].

The definition of cluster algebras were introduced to axiomatize patterns ap-
pearing the dual canonical basis of the coordinate ring of double Bruhat cells,
making these the foundational examples of cluster algebras.

• A Grassmannian Gr(k, n) admits a stratification into positroid cells, which roughly
measure the failure of a k-dimensional subspace to be in generic position relative
to certain coordinate subspaces. The coordinate ring of each such cell is a cluster
algebra, by [Lec14] and [MS14].2

• The decorated Teichmüller space of a marked surface3 parametrizes hyperbolic
metrics on the surface, together with certain additional decorations at the marked
points. Invariants of these metrics called lambda lengths define functions on the
decorated Teichmüller space. When there are enough marked points to allow
triangulations of the surface, the lambda lengths generate a cluster algebra inside
the ring of functions [GSV05, FG06, FST08].

There are many other classes of examples, including generalizations of each of these
three: double Bruhat cells in other semisimple Lie groups, open Richardson cells in partial
flag varieties, and higher Teichmüller spaces.

2Technically speaking, there is still a detail missing: the results of [Lec14] and [MS14] deal with two

slightly different cluster algebras contained in the coordinate ring. I will gloss over this gap.
3Specifically, a real 2-dimensional manifold with boundary and finitely many ‘marked points’.
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2.2. Upper cluster algebras. The basic miracle of cluster algebras is the Laurent
phenomenon: every element of A can be written as an integral Laurent polynomial in
the cluster variables in any cluster. Equivalently, for any cluster f1, f2, ..., fn,

A ⊂ Z[f±11 , f±12 , ..., f±1n ] ⊂ Frac(A)

The set of all rational functions that satisfy the Laurent phenomenon form a subalgebra
of Frac(A), called the upper cluster algebra U [BFZ05]. Concretely,

U :=
⋂

clusters f1,f2,...,fn

Z[f±11 , f±12 , ..., f±1n ] ⊂ Frac(A)

The Laurent phenomenon for A is equivalent to the inclusion A ⊆ U .
One can ask... when is A = U? This important question is linked to a curious di-

chotomy: cluster algebras tend to be well-behaved or pathological, with nothing in be-
tween. For example, rank 3 cluster algebras are either complete intersections generated
by 6 elements, or are infinitely generated with non-Noetherian singularities [Mul13]. To
date, the known cases where A is well-behaved coincide with the known cases when A = U
[BFZ05, Mul13, CLS14].

2.3. Geometry. Since the driving examples of cluster algebras naturally occur as coordi-
nate rings, it is worth reinterpreting a cluster algebra A geometrically by considering the
associated cluster variety X(A) := Spec(C⊗A). This is the universal complex variety
with A in its coordinate ring.4 Each cluster determines an algebraic torus (C×)n ⊂ X(A)
parametrized by the cluster variables. The union of these tori defines a smooth, dense
subscheme inside X(A), and the ring of functions on this union is the upper cluster alge-
bra U . This union need not be all of X(A); in fact, the interesting geometric behavior lies
in its complement.

3. Locally acyclic cluster algebras

A cluster algebra can be defined by an ice quiver Q - a collection
of circles and squares with arrows between them. The circles denote
mutable variables, and the squares denote frozen variables. A quiver
is acyclic if there are no directed cycles of mutable variables.

3.1. Local techniques. Each mutable variable can be mutated repeatedly, while the
frozen variables are static. Consequently, turning a mutable variable into a frozen one
gives a new ice quiver Q† whose cluster algebra A(Q†) is simpler than A(Q). It is then
tempting to try to relate properties of A(Q†) to properties of A(Q).

In [Mul13], I observed that under certain conditions, the algebra A(Q†) is a localization
of A(Q). Geometrically, the cluster variety X(A(Q†)) is an open subvariety in X(A(Q));
call such an open subset a cluster chart. If one can find a set of cluster charts X(Ai) which
cover X(A), then many algebraic properties of A can be checked on the Ai.

An acyclic cluster algebra is a cluster algebra of the form A(Q), where Q is acyclic.
Acyclic cluster algebras were shown to have many desirable properties in [BFZ05]. This
led me to introduce the following definition.

Definition 3.1.1. A cluster algebra A is locally acyclic if X(A) can be covered by
cluster charts X(Ai), where each of the Ai is acyclic.

4If the reader is comfortable with schemes, they should instead consider the integral scheme Spec(A).
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3.2. Properties. A theme in algebraic geometry is that many algebraic properties can be
verified by checking the corresponding geometric property locally. Using this idea, many
properties of acyclic cluster algebras can be extended to locally acyclic cluster algebras.

Theorem. [Mul13, Mul14] Let A be a locally acyclic cluster algebra. Then A = U , and
A is finitely generated, integrally closed, and locally a complete intersection.

This local perspective has produced original results even in the acyclic case. The
exchange matrix E(Q) of Q is the matrix whose entries count the number of arrows in
Q from a variable to a mutable variable. If E(Q) has full rank, we say A(Q) has full rank.

Theorem. [Mul13] If A is locally acyclic and full rank, then X(A) is smooth.

3.3. Positive characteristic. In joint work with Benito, Rajchgot and Smith [BMRS14],
we further explored the geometry of locally acyclic cluster algebras by considering reduc-
tions to characteristic p; that is, algebras k ⊗Z A where char(k) = p > 0. We prove that
each upper cluster algebra has a canonical splitting of the Frobenius map which generates
all other Frobenius splittings. In the case of locally acyclic cluster algebras, we further-
more demonstrate that the canonical splitting fixes no non-trivial ideals, which implies
that k⊗Z A is strongly F-regular.

While an interesting result in its own right, this positive characteristic property has
consequences for the complex geometry.

Theorem. [BMRS14] If A is locally acyclic, then X(A) has at worst canonical singular-
ities.

Canonical singularities are a class of well-behaved singularities which arise in the minimal
model program; they are defined as singularities of Q-Cartier normal varieties which can
be resolved without negative discrepancies.

3.4. First examples. So what cluster algebras are locally acyclic, besides acyclic ones?

In [Mul13], I provide an explicit algorithm, called the Banff
algorithm, for verifying that a given quiver defines a locally acyclic
cluster algebra (an example is shown to the left). It takes place
exclusively on the level of quivers, so it can be a quick and effective
method to check a given example. Several examples of locally acyclic
cluster algebras (which are not acyclic) were given in [Mul13].

A deeper class of examples comes from cluster algebras of marked
surfaces. For this note, a marked surface Σ is a connected, oriented
real surface with boundary, together with a finite set of marked

points on the boundary ∂Σ.5

If ∂Σ is not empty and each component of ∂Σ has at least one marked point, Σ is
triangulable. When Σ is triangulable, a cluster algebra A(Σ) was constructed in [GSV05].
These were the first large class of locally acyclic cluster algebras.

Theorem. [Mul13] If Σ is triangulable with at least two marked points, then A(Σ) is a
locally acyclic cluster algebra.

5Generalizations which include interior marked points exist, but are more complicated [FST08].
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3.5. Subsequent examples. In my three years at LSU, M. Yakimov and I ran a Vertically
Integrated Research (VIGRE) seminar each semester on current research topics. In Spring
of 2011, the seminar focused on locally acyclic cluster algebras, and specifically on the local
acyclicity of other important examples of cluster algebras. The participants6 produced new
examples of locally acyclic cluster algebras and useful lemmas.

However, these results were subsumed by my later work with D. Speyer [MS14], which
established that the cluster algebras associated to positroid cells in Grassmannians are
locally acyclic, using an application of the Banff algorithm to affine permutations.

Theorem. [MS14] The coordinate ring of a positroid cell is a locally acyclic cluster algebra.

In fact, this resolves the issue for double Bruhat cells in GL(n), because there is an
isomorphism of cluster algebras between the coordinate ring of any double Bruhat cell in
GL(n) and the coordinate ring of a positroid.

4. Skein algebras of marked surfaces

Locally acyclic cluster algebras have their origin in the study of a seemingly unrelated,
non-commutative algebra originating in knot theory - the skein algebra of a surface.

4.1. The skein algebra. Recall that a marked surface Σ is a connected, oriented
surface-with-boundary, together with a finite set of marked points on the boundary ∂Σ.

A curve on Σ is an immersion C → Σ of a curve-with-boundary
C, such that any boundary ∂C is sent to the marked points. A link
diagram L is a collection of curves on Σ such that any intersections
are simple and transverse, together with an ordering of the strands
at any intersection. Link diagrams generalize the projection of a
knot in Σ × [0, 1] onto Σ, where the orderings keep track of how
the strands are passing over each other.

= q +q−1 =q

=−(q2 + q−2) = =0

Skein relations

Let Z[q±1] be the ring of Laurent polynomi-
als in a formal variable q. The skein algebra
Skq(Σ) of Σ is the Z[q±1]-span link diagrams
(up to isotopy), modulo the four classes of
skein relations pictured to the left. The alge-
bra Skq(Σ) has an associative product given
by superimposing link diagrams.

The skein algebra of an unmarked surface was introduced in [Tur89] and [Prz91] to
generalize Kauffman’s bracket for computing the Jones polynomial, and have since become
a significant area of knot theory. My generalization to marked surfaces is new [Mul12],
with motivation coming from cluster algebras and Teichmüller theory.

4.2. Quantum cluster algebras. Skein algebras can be related to quantum cluster al-
gebras. Quantum cluster algebras are non-commutative deformations of cluster algebras,
in which two cluster variables in the same cluster quasi-commute; that is, xixj = qmxjxi
for some m ∈ Z. A remarkable amount of the theory generalizes to the quantum setting.
There is a quantum cluster algebra Aq and a quantum upper cluster algebra Uq.

If ∂Σ is not empty and each component of ∂Σ has at least one marked point, Σ is
triangulable. In [Mul12], I construct algebras Aq(Σ) and Uq(Σ) for a triangulable marked
surface, which naturally quantize the cluster algebras mentioned in the previous section.

6Roughly a dozen participants, containing a mix of graduate students, undergraduates and faculty.
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A boundary curve in Σ is a curve which is isotopic to one contained in ∂Σ. The set of
boundary curves generates a Ore set in Skq(Σ); let Skoq(Σ) be the localization at this set.

Theorem. [Mul12] For triangulable Σ, there are inclusions Aq(Σ) ⊆ Skoq(Σ) ⊆ Uq(Σ). If
Σ has at least two marked points, these are equalities.

The proof is via a non-commutative generalization of local acyclicity, which works even
though the non-commutativity breaks any direct connection to geometry.

This theorem has implications for Aq(Σ) and Skq(Σ). The cluster structure gives
quasi-commuting families in Skq(Σ), in which any other element can be written as a skew-
Laurent polynomial. The diagrammatics for Aq(Σ) give a tool for rapid computation with
elements which may be in distant clusters; this is prohibitively difficult in general.

5. The theta basis

5.1. Scattering diagrams. Over the last year, a revolutionary perspective has emerged
from the work of Gross, Hacking, Keel and Kontsevich [GHKK] on mirror symmetry,
a suite of conjectures which relate the complex geometry of a suitable space X to the
symplectic geometry of a ‘mirror dual space’ X̌. By considering the ‘tropical boundary’ of
the mirror dual of a cluster variety, they describe a conjectural basis of any cluster algebra.

Given a cluster algebra A with a distinguished
choice of initial cluster, they associate a scattering
diagram, consisting of a (typically infinite) collection
of walls in Rn. A wall is a codimension 1 polyhedral
cone, equipped with some algebraic ‘scattering data’.

A broken line in a scattering diagram is a piecewise
linear map from [0,∞)→ Rn which is non-linear only
at the walls, and then only in certain ways allowed by
the scattering data. Each lattice point α ∈ Zn ⊂ Rn
in a scattering diagram determines a theta function
Θα given by formal sum over all broken lines with a
fixed starting point and final derivative α. Products
between theta functions can be also be computed by
counting certain collections of broken lines.

Conjecturally, these theta functions form a long-
sought basis for the cluster algebra which contains the

Figure 1. A scat-
tering diagram

cluster variables and has good positivity properties. However, there are still many basic
open questions, including a lack of explicit formulas in all but the most basic examples.

5.2. Results on theta bases. At an AMS workshop in Snowbird last summer, a group
including myself [CCG+] was able to prove that the theta basis of a 2 dimensional cluster
algebra coincides with the greedy basis, a well-studied strongly positive basis first defined
in [SZ04]. This provides the only non-trivial example where the theta basis is completely
understood.

These new tools have significant potential to answer long-standing questions in the field.
For example, a large amount of recent work on the combinatorics of quiver mutation has
focused on the existence of a maximal green sequence, a property with a wide range of
applications to representation theory, physics and Donaldson-Thomas theory. Using theta
functions, I demonstrated that the existence of a maximal green sequence is not preserved
by mutation [Mul], disproving a widely-held conjecture.
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