Lower bound cluster algebras: Presentations and properties

Greg Muller, joint with Jenna Rajchgot and Bradley Zykoski This work was an REU project at the U. of Michigan in Summer 2015

$$
\text { January 9, } 2016
$$

One-step cluster variables

We begin by fixing a quiver Q with vertices labeled $1,2, \ldots, r$.

One-step cluster variables

We begin by fixing a quiver Q with vertices labeled $1,2, \ldots, r$.

To each vertex i, we associate 3 rational functions in $x_{1}, x_{2}, \ldots, x_{r}$.

$$
\begin{aligned}
& p_{i}^{+}:=\prod_{\text {arrows } j \leftarrow i} x_{j}, \quad p_{i}^{-}:=\prod_{\text {arrows } j \rightarrow i} x_{j} \\
& x_{i}^{\prime}:=\frac{p_{i}^{+}+p_{i}^{-}}{x_{i}} \quad \text { (One-step cluster variable) }
\end{aligned}
$$

One-step cluster variables

We begin by fixing a quiver Q with vertices labeled $1,2, \ldots, r$.

$$
\begin{gathered}
p_{1}^{+}=x_{2}, \quad p_{1}^{-}=x_{3}^{2} \\
x_{1}^{\prime}=\frac{x_{2}+x_{3}^{2}}{x_{1}}
\end{gathered}
$$

To each vertex i, we associate 3 rational functions in $x_{1}, x_{2}, \ldots, x_{r}$.

$$
\begin{aligned}
& p_{i}^{+}:=\prod_{\text {arrows } j \leftarrow i} x_{j}, \quad p_{i}^{-}:=\prod_{\text {arrows } j \rightarrow i} x_{j} \\
& x_{i}^{\prime}:=\frac{p_{i}^{+}+p_{i}^{-}}{x_{i}} \text { (One-step cluster variable) }
\end{aligned}
$$

One-step cluster variables

We begin by fixing a quiver Q with vertices labeled $1,2, \ldots, r$.

$$
\begin{gathered}
p_{1}^{+}=x_{2}, \quad p_{1}^{-}=x_{3}^{2} \\
x_{1}^{\prime}=\frac{x_{2}+x_{3}^{2}}{x_{1}}
\end{gathered}
$$

To each vertex i, we associate 3 rational functions in $x_{1}, x_{2}, \ldots, x_{r}$.

$$
\begin{aligned}
& p_{i}^{+}:=\prod_{\text {arrows } j \leftarrow i} x_{j}, \quad p_{i}^{-}:=\prod_{\text {arrows } j \rightarrow i} x_{j} \\
& x_{i}^{\prime}:=\frac{p_{i}^{+}+p_{i}^{-}}{x_{i}} \text { (One-step cluster variable) }
\end{aligned}
$$

Q: What are the relations among the $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$?

Lower bound cluster algebras

This question is essentially the study of the following ring.

Definition: Lower bound cluster algebra [BFZ, 2005]

Given Q, the lower bound cluster algebra is the subring

$$
L(Q) \subset \mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

generated by $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$.

Lower bound cluster algebras

This question is essentially the study of the following ring.
Definition: Lower bound cluster algebra [BFZ, 2005]
Given Q, the lower bound cluster algebra is the subring

$$
L(Q) \subset \mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

generated by $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$.

Cluster algebra [Fomin-Zelevinsky, 2001]

More generally, any sequence of vertices can be used to defined a cluster variable. The cluster algebra $\mathcal{A}(\mathrm{Q})$ of Q is the subring generated by all cluster variables (often an infinite set).

For quivers without directed cycles, $L(\mathrm{Q})=\mathcal{A}(\mathrm{Q})$. In general, $L(Q)$ is more tractable than $\mathcal{A}(Q) \ldots$...

Relations in $L(\mathrm{Q})$

Q: What are the relations among the $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$?
More precisely, what is the kernel K of the following map?

$$
\begin{gathered}
\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}\right] \rightarrow L(\mathrm{Q}) \\
x_{i} \mapsto x_{i}, \quad y_{i} \mapsto x_{i}^{\prime}
\end{gathered}
$$

Relations in $L(Q)$

Q: What are the relations among the $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$?
More precisely, what is the kernel K of the following map?

$$
\begin{gathered}
\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}\right] \rightarrow L(\mathrm{Q}) \\
x_{i} \mapsto x_{i}, \quad y_{i} \mapsto x_{i}^{\prime}
\end{gathered}
$$

Some relations (that is, elements of the kernel K) are easy!

Definition: Defining relation

For each x_{i}^{\prime}, there is a defining equation

$$
x_{i} x_{i}^{\prime}=p_{i}^{+}+p_{i}^{-}
$$

Hence, for each vertex i, there is a defining relation

$$
x_{i} y_{i}-p_{i}^{+}-p_{i}^{-} \in K
$$

The defining relations are not enough

A more interesting identity

$$
\begin{aligned}
x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} & =\frac{x_{2}+x_{3}^{2}}{x_{1}} \cdot \frac{x_{3}+x_{1}}{x_{2}} \cdot \frac{x_{1}^{2}+x_{2}}{x_{3}} \\
& =\frac{x_{1} x_{2} x_{3}^{2}+x_{1}^{3} x_{3}^{2}+x_{2} x_{3}^{3}+x_{1}^{2} x_{3}^{3}+x_{1} x_{2}^{2}+x_{1}^{3} x_{2}+x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}}{x_{1} x_{2} x_{3}} \\
& =\frac{x_{2}+x_{3}^{2}}{x_{1}}+\frac{x_{1} x_{3}^{2}+x_{1}^{2} x_{3}}{x_{2}}+\frac{x_{1}^{2}+x_{2}}{x_{3}}+x_{1}+x_{3} \\
& =x_{1}^{\prime}+x_{1} x_{3} x_{2}^{\prime}+x_{3}^{\prime}+x_{1}+x_{3}
\end{aligned}
$$

The defining relations are not enough

A more interesting identity

$$
\begin{aligned}
x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} & =\frac{x_{2}+x_{3}^{2}}{x_{1}} \cdot \frac{x_{3}+x_{1}}{x_{2}} \cdot \frac{x_{1}^{2}+x_{2}}{x_{3}} \\
& =\frac{x_{1} x_{2} x_{3}^{2}+x_{1}^{3} x_{3}^{2}+x_{2} x_{3}^{3}+x_{1}^{2} x_{3}^{3}+x_{1} x_{2}^{2}+x_{1}^{3} x_{2}+x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}}{x_{1} x_{2} x_{3}} \\
& =\frac{x_{2}+x_{3}^{2}}{x_{1}}+\frac{x_{1} x_{3}^{2}+x_{1}^{2} x_{3}}{x_{2}}+\frac{x_{1}^{2}+x_{2}}{x_{3}}+x_{1}+x_{3} \\
& =x_{1}^{\prime}+x_{1} x_{3} x_{2}^{\prime}+x_{3}^{\prime}+x_{1}+x_{3}
\end{aligned}
$$

However, the corresponding element of K

$$
y_{1} y_{2} y_{3}-\left(y_{1}+x_{1} x_{3} y_{2}+y_{3}+x_{1}+x_{3}\right)
$$

is not in the ideal generated by the defining relations

$$
x_{1} y_{1}-\left(x_{2}+x_{3}^{2}\right), \quad x_{2} y_{2}-\left(x_{3}+x_{1}\right), \quad x_{3} y_{3}-\left(x_{1}^{2}+x_{2}\right)
$$

Cycle relations

Remarkably, this example generalizes! Given a directed cycle

$$
v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{k+1}=v_{1}
$$

in Q , the product $x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}$ satisfies an identity of the form $x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}=\sum$ monomials with $<k$ one-step cluster variables

Cycle relations

Remarkably, this example generalizes! Given a directed cycle

$$
v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{k+1}=v_{1}
$$

in Q , the product $x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}$ satisfies an identity of the form
$x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}=\sum$ monomials with $<k$ one-step cluster variables

Definition: Cycle relation

Given a directed cycle

$$
v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{k+1}=v_{1}
$$

in Q, define the associated cycle relation

$$
\left[\sum(-1)^{|S|}\left(\prod_{i \in S} \frac{p_{v_{i}}^{+} p_{v_{i+1}}^{-}}{x_{v_{i}} x_{v_{i+1}}}\right)\left(\prod_{i \notin S \cup(S+1)} y_{v_{i}}\right)\right]-\prod_{i=1}^{k} \frac{p_{v_{i}}^{+}}{x_{v_{i}}}-\prod_{i=1}^{k} \frac{p_{v_{i}}^{-}}{x_{v_{i}}}
$$

where the sum is over $S \subset\{1,2, \ldots, k\}$ without consecutive pairs.

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$
$S=\emptyset$
$y_{1} y_{2} y_{3}$

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

$$
S=\{1\}
$$

$$
y_{1} y_{2} y_{3}+\left(-\frac{x_{2} x_{1}}{x_{1} x_{2}} y_{3}\right)
$$

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

$$
S=\{2\} \quad y_{1} y_{2} y_{3}-y_{3}+\left(-\frac{x_{3} x_{2}}{x_{2} x_{3}} y_{1}\right)
$$

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

$$
S=\{3\} \quad y_{1} y_{2} y_{3}-y_{3}-y_{1}+\left(-\frac{x_{1}^{2} \times x_{3}^{2}}{x_{3} x_{1}} y_{2}\right)
$$

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

$$
y_{1} y_{2} y_{3}-y_{3}-y_{1}-x_{1} x_{3} y_{2}+\left(-\frac{x_{1}^{2} x_{2} x_{3}}{x_{1} x_{2} x_{3}}-\frac{x_{1} x_{2} x_{3}^{2}}{x_{1} x_{2} x_{3}}\right)
$$

Cycle relations (example)

Cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

$$
y_{1} y_{2} y_{3}-y_{3}-y_{1}-x_{1} x_{3} y_{2}-x_{1}-x_{3}
$$

The defining and cycle relations are enough!

Theorem [M-Rajchgot-Zykoski, 2015]

The lower bound cluster algebra $L(Q)$ is isomorphic to

$$
\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}\right] / K
$$

where K is the ideal generated by the defining relations and the cycle relations.

The defining and cycle relations are enough!

Theorem [M-Rajchgot-Zykoski, 2015]

The lower bound cluster algebra $L(Q)$ is isomorphic to

$$
\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}\right] / K
$$

where K is the ideal generated by the defining relations and the cycle relations.

For Q on the right, $L(Q)$ is the quotient of

$$
\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right]
$$

by the ideal generated by the four relations

$$
\begin{gathered}
x_{1} y_{1}-\left(x_{2}+x_{3}^{2}\right), \quad x_{2} y_{2}-\left(x_{3}+x_{1}\right), \quad x_{3} y_{3}-\left(x_{1}^{2}+x_{2}\right) \\
y_{1} y_{2} y_{3}-\left(y_{1}+x_{1} x_{3} y_{2}+y_{3}+x_{1}+x_{3}\right)
\end{gathered}
$$

Reducing expressions in $L(Q)$

Observe that each relation is a kind of reduction rule:

$$
x_{i} x_{i}^{\prime}=\text { a binomial in } x_{1}, x_{2}, \ldots, x_{r}
$$

$x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}=\sum$ monomials with $<k$ one-step cluster variables

Reducing expressions in $L(\mathrm{Q})$

Observe that each relation is a kind of reduction rule:

$$
x_{i} x_{i}^{\prime}=\text { a binomial in } x_{1}, x_{2}, \ldots, x_{r}
$$

$x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}=\sum$ monomials with $<k$ one-step cluster variables

Every element of $L(Q)$ can be written uniquely as a polynomial in $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$ that cannot be reduced by these rules.

Reducing expressions in $L(Q)$

Observe that each relation is a kind of reduction rule:

$$
x_{i} x_{i}^{\prime}=\text { a binomial in } x_{1}, x_{2}, \ldots, x_{r}
$$

$x_{v_{1}}^{\prime} x_{v_{2}}^{\prime} \cdots x_{v_{k}}^{\prime}=\sum$ monomials with $<k$ one-step cluster variables

Every element of $L(Q)$ can be written uniquely as a polynomial in $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{r}^{\prime}$ that cannot be reduced by these rules.

Theorem [M-Rajchgot-Zykowski, 2015]

The defining relations and cycle relations collectively form a Gröbner basis for K, with respect to any term order in which the y-variables are much more expensive than the x-variables.

The irreducible monomials can be encoded in a simplicial complex.

Defn: The Stanley-Reisner complex

The Stanley-Reisner complex of K is the simplicial complex with

- a vertex for each generator $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}$, and
- a simplex for each subset of the the generators whose product cannot be reduced (doesn't contain any $x_{i} y_{i}$ or $y_{v_{1}} y_{v_{2}} \cdots y_{v_{k}}$).

The irreducible monomials can be encoded in a simplicial complex.

Defn: The Stanley-Reisner complex

The Stanley-Reisner complex of K is the simplicial complex with

- a vertex for each generator $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}$, and
- a simplex for each subset of the the generators whose product cannot be reduced (doesn't contain any $x_{i} y_{i}$ or $y_{v_{1}} y_{v_{2}} \cdots y_{v_{k}}$).

The irreducible monomials can be encoded in a simplicial complex.

Defn: The Stanley-Reisner complex

The Stanley-Reisner complex of K is the simplicial complex with

- a vertex for each generator $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}$, and
- a simplex for each subset of the the generators whose product cannot be reduced (doesn't contain any $x_{i} y_{i}$ or $y_{v_{1}} y_{v_{2}} \cdots y_{v_{k}}$).

As the example suggests, these complexes are well-behaved.

Theorem [M-Rajchgot-Zykowski, 2015]

Let Δ be the Stanley-Reisner complex of K.

- If Q has no directed cycles, Δ is a simplicial $(r-1)$-sphere.
- Otherwise, Δ is a simplicial $(r-1)$-ball.

As the example suggests, these complexes are well-behaved.

Theorem [M-Rajchgot-Zykowski, 2015]

Let Δ be the Stanley-Reisner complex of K.

- If Q has no directed cycles, Δ is a simplicial $(r-1)$-sphere.
- Otherwise, Δ is a simplicial $(r-1)$-ball.

This topological fact has algebraic consequences!

Theorem [M-Rajchgot-Zykowski, 2015]

For all quivers $Q, L(Q)$ is Cohen-Macaulay and normal.
Cohen-Macaulayness is a direct corollary, and normality requires considering a finite set of height 1 primes.

What next?

The bigger fish
Extending these results to general cluster algebras.

What next?

The bigger fish

Extending these results to general cluster algebras.
This is not so crazy! While a cluster algebra is defined by an infinite generating set, often a finite subset suffices.

Extending our work to larger finite sets of cluster variables would yield analogous results for every finitely-generated cluster algebra.

