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Lower bound cluster algebras Relations Properties

One-step cluster variables

We begin by fixing a quiver Q with vertices labeled 1, 2, ..., r .

1

23

To each vertex i , we associate 3 rational functions in x1, x2, ..., xr .

p+i :=
∏

arrows j←i

xj , p−i :=
∏

arrows j→i

xj

x ′i :=
p+i + p−i

xi
(One-step cluster variable)

Q: What are the relations among the x1, x2, ..., xr , x
′
1, x
′
2, ..., x

′
r?
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Lower bound cluster algebras

This question is essentially the study of the following ring.

Definition: Lower bound cluster algebra [BFZ, 2005]

Given Q, the lower bound cluster algebra is the subring

L(Q) ⊂ Q(x1, x2, ..., xr )

generated by x1, x2, ..., xr , x
′
1, x
′
2, ..., x

′
r .

Cluster algebra [Fomin-Zelevinsky, 2001]

More generally, any sequence of vertices can be used to defined a
cluster variable. The cluster algebra A(Q) of Q is the subring
generated by all cluster variables (often an infinite set).

For quivers without directed cycles, L(Q) = A(Q). In general,
L(Q) is more tractable than A(Q).

..but a bit less exciting.
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Relations in L(Q)

Q: What are the relations among the x1, x2, ..., xr , x
′
1, x
′
2, ..., x

′
r?

More precisely, what is the kernel K of the following map?

Q[x1, x2, ..., xr , y1, y2, ..., yr ]→ L(Q)

xi 7→ xi , yi 7→ x ′i

Some relations (that is, elements of the kernel K ) are easy!

Definition: Defining relation

For each x ′i , there is a defining equation

xix
′
i = p+i + p−i

Hence, for each vertex i , there is a defining relation

xiyi − p+i − p−i ∈ K
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The defining relations are not enough

A more interesting identity

x ′1x
′
2x
′
3 =

x2 + x23
x1

· x3 + x1
x2

· x
2
1 + x2
x3

=
x1x2x23+x31 x

2
3+x2x33+x21 x

3
3+x1x22+x31 x2+x22 x3+x21 x2x3

x1x2x3

=
x2 + x23

x1
+

x1x
2
3 + x21x3
x2

+
x21 + x2

x3
+ x1 + x3

= x ′1 + x1x3x
′
2 + x ′3 + x1 + x3

However, the corresponding element of K

y1y2y3 − (y1 + x1x3y2 + y3 + x1 + x3)

is not in the ideal generated by the defining relations

x1y1 − (x2 + x23 ), x2y2 − (x3 + x1), x3y3 − (x21 + x2)



Lower bound cluster algebras Relations Properties

The defining relations are not enough

A more interesting identity

x ′1x
′
2x
′
3 =

x2 + x23
x1

· x3 + x1
x2

· x
2
1 + x2
x3

=
x1x2x23+x31 x

2
3+x2x33+x21 x

3
3+x1x22+x31 x2+x22 x3+x21 x2x3

x1x2x3

=
x2 + x23

x1
+

x1x
2
3 + x21x3
x2

+
x21 + x2

x3
+ x1 + x3

= x ′1 + x1x3x
′
2 + x ′3 + x1 + x3

However, the corresponding element of K

y1y2y3 − (y1 + x1x3y2 + y3 + x1 + x3)

is not in the ideal generated by the defining relations

x1y1 − (x2 + x23 ), x2y2 − (x3 + x1), x3y3 − (x21 + x2)



Lower bound cluster algebras Relations Properties

Cycle relations

Remarkably, this example generalizes! Given a directed cycle

v1 → v2 → ...→ vk → vk+1 = v1

in Q, the product x ′v1x
′
v2 · · · x

′
vk

satisfies an identity of the form

x ′v1x
′
v2 · · · x

′
vk

=
∑

monomials with < k one-step cluster variables

Definition: Cycle relation

Given a directed cycle

v1 → v2 → ...→ vk → vk+1 = v1

in Q, define the associated cycle relation∑(−1)|S|

(∏
i∈S

p+vi p
−
vi+1

xvi xvi+1

) ∏
i 6∈S∪(S+1)

yvi

− k∏
i=1

p+vi
xvi
−

k∏
i=1

p−vi
xvi

where the sum is over S ⊂ {1, 2, ..., k} without consecutive pairs.
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Cycle relations (example)

∑(−1)|S |

(∏
i∈S

p+vi p
−
vi+1

xvi xvi+1

) ∏
i 6∈S∪(S+1)

yvi

− k∏
i=1

p+vi
xvi
−

k∏
i=1

p−vi
xvi

1

23

Cycle: 1→ 2→ 3→ 1

S = ∅S = {1}S = {2}S = {3} y1y2y3y1y2y3 +
(
− x2x1

x1x2
y3
)

y1y2y3 − y3 +
(
− x3x2

x2x3
y1
)

y1y2y3 − y3 − y1 +
(
− x21 x

2
3

x3x1
y2
)

y1y2y3 − y3 − y1 − x1x3y2 +
(
− x21 x2x3

x1x2x3
− x1x2x23

x1x2x3

)
y1y2y3 − y3 − y1 − x1x3y2 − x1 − x3
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The defining and cycle relations are enough!

Theorem [M-Rajchgot-Zykoski, 2015]

The lower bound cluster algebra L(Q) is isomorphic to

Z[x1, x2, ..., xr , y1, y2, ..., yr ]/K

where K is the ideal generated by the defining relations and the
cycle relations.

For Q on the right, L(Q) is the quotient of

Z[x1, x2, x3, y1, y2, y3]

by the ideal generated by the four relations

1

23

x1y1 − (x2 + x23 ), x2y2 − (x3 + x1), x3y3 − (x21 + x2)

y1y2y3 − (y1 + x1x3y2 + y3 + x1 + x3)
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Reducing expressions in L(Q)

Observe that each relation is a kind of reduction rule:

xix
′
i = a binomial in x1, x2, ..., xr

x ′v1x
′
v2 · · · x

′
vk

=
∑

monomials with < k one-step cluster variables

Every element of L(Q) can be written uniquely as a polynomial in
x1, x2, ..., xr , x

′
1, x
′
2, ..., x

′
r that cannot be reduced by these rules.

Theorem [M-Rajchgot-Zykowski, 2015]

The defining relations and cycle relations collectively form a
Gröbner basis for K , with respect to any term order in which the
y -variables are much more expensive than the x-variables.
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The irreducible monomials can be encoded in a simplicial complex.

Defn: The Stanley-Reisner complex

The Stanley-Reisner complex of K is the simplicial complex with

a vertex for each generator x1, x2, ..., xr , y1, y2, ..., yr , and

a simplex for each subset of the the generators whose product
cannot be reduced (doesn’t contain any xiyi or yv1yv2 · · · yvk ).

1

23

x1

x2x3

y1

y3y2
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As the example suggests, these complexes are well-behaved.

Theorem [M-Rajchgot-Zykowski, 2015]

Let ∆ be the Stanley-Reisner complex of K .

If Q has no directed cycles, ∆ is a simplicial (r − 1)-sphere.

Otherwise, ∆ is a simplicial (r − 1)-ball.

This topological fact has algebraic consequences!

Theorem [M-Rajchgot-Zykowski, 2015]

For all quivers Q, L(Q) is Cohen-Macaulay and normal.

Cohen-Macaulayness is a direct corollary, and normality requires
considering a finite set of height 1 primes.
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What next?

The bigger fish

Extending these results to general cluster algebras.

This is not so crazy! While a cluster algebra is defined by an
infinite generating set, often a finite subset suffices.

Extending our work to larger finite sets of cluster variables would
yield analogous results for every finitely-generated cluster algebra.
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