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Objects of study: positroid cells

The matroid of a k × n matrix is the set of subsets of columns
which form a basis, written as k-subsets of [n] := {1, 2, ...., n}.
A positroid is the matroid of a ‘totally positive matrix’: a
real-valued matrix whose maximal minors are all non-negative.

A matroid M defines a variety in the (k , n)-Grassmannian.

Π(M) := {[A] ∈ Gr(k, n) | the matroid of A ⊆M}

Definition (Positroid cell)

The positroid cell of a positroid M is

Π◦(M) := Π(M)−
⋃

positroidsM′⊆M
Π(M′)

These cells define a well-behaved stratification of Gr(k , n).
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Motivation from double Bruhat cells

Example (Double Bruhat cells)

Double Bruhat cells in GL(n) map to positroid cells under

GL(n) ↪→ Gr(n, 2n), A 7→ [ ω A ]

where ω is the antidiagonal matrix of ones.

In a double Bruhat cell, the same data indexes two sets of subtori.

Reduced words
for (u, v)

Products of elementary
matrices in GLu,v

Clusters in GLu,v

The twist

Berenstein-Fomin-Zelevinsky introduced a twist automorphism of
the cell GLu,v which takes one type of torus to the other.
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The need for a generalized twist

Postnikov described a generalization to all positroid cells.

Reduced graphs in the
disc with positroid M

Boundary measurement
maps into Π◦(M)

Conj. clusters in Π◦(M)

?

However, it wasn’t proven these constructions defined tori, and the
generalized twist was missing for more than a decade!
Then, Marsh-Scott found the twist for the open cell in Gr(k, n).

Our goal!

Inspired by MS, define the twist automorphism of every Π◦(M).

As a corollary, we prove that the constructions produce tori.
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But first, we need to define...

a reduced graph with positroid M,

its boundary measurement map

B : a torus −→ Π◦(M),

and its (conjectural) cluster

F : Π◦(M) 99K a torus.

Compared to that, the definition of the twist is elementary.
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Matchings of graphs in the disc

Let G be a graph in the disc with
a 2-coloring of its internal vertices.
We assume each boundary vertex
is adjacent to one white vertex,
and no black or boundary vertices.

A matching of G is a subset of the
edges for which every internal vertex
is in exactly one edge. We assume a
matching exists.
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The positroid of a graph

Observation: Every matching of G must use

k := (# of white vertices)− (# of black vertices)

boundary vertices.

If we index the boundary vertices clockwise by [n], which
k-element subsets of [n] are the boundary of matchings?

Theorem (Postnikov, Talaska, Postnikov-Speyer-Williams)

The k-element subsets of [n] which are the boundary of some
matching of G form a positroid. Every positroid occurs this way.

A graph G is reduced if it has the minimal number of faces among
all graphs with the same positroid as G .
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Generating functions of matchings

More than asking if a subset I ∈
(n

k

)
is a boundary, we can encode

which matchings have boundary I into a generating function DI .

Example (Generating functions)

a b
c

d
e

f g

h i
j

1

2

3

4

The
(4
2

)
generating functions are:

D12 = bdgi D13 = bdfj
D14 = adfh D23 = begj

D24 = acgi + aegh D34 = acfj

Clearly, a generating function DI is identically zero if and only if I
is not in the positroid of G .
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Relations between generating functions

Remarkably, the generating functions satisfy the Plücker relations!
So, for a complex number at each edge of G , there is a matrix...

a b
c

d
e

f g

h i
j

1

2

3

4

[
bd bge

f 0 −ac
0 gi fj afh

b

]

...whose I th maximal minor equals the I th generating function DI ...

D12 = bdgi D13 = bdfj
D14 = adfh D23 = begj

D24 = acgi + aegh D34 = acfj

∆12 = bdgi ∆13 = bdfj
∆14 = adfh ∆23 = begj

∆24 = acgi + aegh ∆34 = acfj

...and this matrix determines a well-defined point in Gr(k , n).
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The boundary measurement map

Hence, we have a map

CEdges(G) −→ Gr(k , n)

This map is invariant under gauge transformations: simultaneously
scaling the numbers at each edge incident to a fixed internal vertex.

Theorem (Postnikov, Talaska, M-Speyer)

For reduced G , the map (C∗)Edges(G) → Gr(k , n) factors through

B : (C∗)Edges(E)/Gauge −→ Π◦(M)

where M is the positroid of G .

The map B is called the boundary measurement map.

Conjecture (essentially Postnikov)

The map B is an open inclusion.
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Strands in a reduced graph

A strand in reduced G is a path which...

passes through the midpoints of edges,

turns right around white vertices,

turns left around black vertices, and

begins and ends at boundary vertices.

1

2 3

4

56

1

2 3

4

56

3

3

3

Index a strand by its source vertex, and
label each face to the left of the strand
by that label.
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Face labels and the cluster structure

Repeating this for each strand, each face of
G gets labeled by a subset of [n].

Each face label is a k-element subset of [n],
which determines a Plücker coordinate on
Gr(k , n).

1

2 3

4

56

156
125

123

234

345

456

256

245

124

Conjecture (essentially Postnikov)

The homogeneous coordinate ring of Π◦(M) is a cluster algebra,
and the Plücker coordinates of the faces of G form a cluster.

The conjecture implies the Plückers of the faces give a rational map

F : Π◦(M) 99K (C∗)Faces(G)/Scaling

which is an isomorphism on its domain (the cluster torus).
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Two conjectural tori associated to a reduced graph

We now see that a reduced graph G with positroid M determines
two subspaces in Π◦(M), which are both conjecturally tori.

The image of the boundary measurement map

B : (C∗)Edges(G)/Gauge −→ Π◦(M)

The domain of definition of the cluster of Plücker coordinates

F : Π◦(M) 99K (C∗)Faces(G)/Scaling

In a simple world, they’d coincide and we’d have an isomorphism

F ◦ B : (C∗)Edges(G)/Gauge
∼−→ (C∗)Faces(G)/Scaling

In the real world, we need a twist automorphism τ of Π◦(M).
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The twist of a matrix

Let A be a k × n matrix of rank k , and assume no zero columns.
Denote the ith column of A by Ai , with cyclic indices: Ai+n = Ai .

Definition (The twist)

The twist τ(A) of A is the k × n-matrix defined on columns by

τ(A)i · Ai = 1

τ(A)i · Aj = 0, if Aj is not in the span of {Ai ,Ai+1, ...,Aj−1}

The columns Ai and {Aj} in the definition are the ‘first’ basis of
columns encountered when starting at column i and moving right.

The vector τ(A)i is the left column of the inverse of the submatrix
on these columns.
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Example of a twist

Twisting a matrix

Consider the 3× 4 matrix

A =

1 1 0 0
0 1 1 2
0 0 0 1


The first column τ(A)1 of the twist is a 3-vector v , such that...

v ·
[
1
0
0

]
= 1, v ·

[
1
1
0

]
= 0, v ·

[
0
1
0

]
is already fixed, and v ·

[
0
2
1

]
= 0

We see that v =
[

1
−1
2

]
. We compute the twist matrix

τ(A) =

 1 1 0 0
−1 0 1 0
2 0 −2 1
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The twist on a positroid cell

Twisting matrices descends to a well-defined map of sets

Gr(k , n)
τ−→ Gr(k , n)

However, this map is not continuous; the defining equations jump
when Aj deforms to a column in the span of {Ai ,Ai+1, ...,Aj−1}.

Proposition

The domains of continuity of τ are precisely the positroid cells.

Theorem (M-Speyer)

The twist τ restricts to a regular automorphism of Π◦(M).

The inverse of τ is given by a virtually identical formula to τ , by
reversing the order of the columns.
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The induced map on tori

If τ takes the image of B to the domain of F, then the composition

F ◦ τ ◦ B : (C∗)Edges(G)/Gauge −→ (C∗)Faces(G)/Scaling

is a regular morphism. What is this map?

Example: the open cell of Gr(2, 4)

a b
c

d
e

f g

h i
j

1

2

3

4

1

2

3

4

1
acfj

1
adfh

1
bdgi

1
begj

1
aegh

[
bd beg

f 0 −ac
0 gi fj afh

b

] [
1

bd
f

beg
h

bcj 0

− e
dfi 0 1

fj
b

afh

]B
τ

F

?
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Minimal matchings

It looks like the entries are reciprocals of matchings! Which ones?

Proposition (Propp)

The set of matchings of G with fixed boundary I has a partial
order, with a unique minimal and maximal element (if non-empty).

Lemma (M-Speyer)

If I is the label of a face in G , then

∆I ◦ τ ◦ B =
1

product of edges in MI

where MI is the minimal matching with boundary I .

We have two direct constructions of these minimal matchings.
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The isomorphism of model tori

We can collect these coordinates into a map

(C∗)Edges(G) −→ (C∗)Faces(G)

whose coordinate at a face labeled by I is the reciprocal of the
product of the edges in the minimal matching with boundary I .

Lemma (M-Speyer)

The above map induces an isomorphism of algebraic tori

D : (C∗)Edges(E)/Gauge −→ (C∗)Faces(E)/Scaling

In fact, the inverse D−1 can be induced from an explicit map

(C∗)Faces(G) −→ (C∗)Edges(G)

whose coordinate at an edge only uses the two adjacent faces.
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Putting it all together

Theorem (M-Speyer)

For each reduced graph G , there is a commutative diagram

(C∗)Edges(G)/Gauge (C∗)Faces(G)/Scaling

Π◦(M) Π◦(M)

D

D−1

B F
τ

τ−1

Corollaries:

The image of B and the domain of F are open algebraic tori in
Π◦(M), and τ takes one to the other.

The (rational) inverse of B is D−1 ◦ F ◦ τ .

The (regular) inverse of F is τ ◦ B ◦ D−1.
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

? ?

? ? ? ?

? ? ? ? ? ?

?

? ?

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f


B
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0

τ
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

1

1
c

1
a

1
be−cd

b
acd

1
ad

(adf )−1

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0



F

τ
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

1 a

c ac2d
b

a2cd
b

ad

be − cd
adf (be − cd)

a2cd2 f
b

a2cd2 f
b

a2d2f

adf

ac

acd(be−cd)
b

a2cd2

b

1

2

3 4

5

6

1

1
c

1
a

1
be−cd

b
acd

1
ad

(adf )−1

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0



D−1

F

τ
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

1 a

1 1 1 d

1 1 1 1 1 f

e
d

be−cd
ae

cd
ae

1

2

3 4

5

6

1

1
c

1
a

1
be−cd

b
acd

1
ad

(adf )−1

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0



D−1

B F

τ
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Relation to the Chamber Ansatz

So, we have the following boundary measurement map.

1

2

3 4

5

6

1 a

1 1 1 d

1 1 1 1 1 f

e
d

be−cd
ae

cd
ae

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

B

This is equivalent to a factorization into elementary matrices.[
a b c
0 d e
0 0 f

]
=

[
a 0 0
0 d 0
0 0 f

][
1 cd

ae
0

0 1 0
0 0 1

][
1 0 0
0 1 e

d

0 0 1

][
1 be−cd

ae
0

0 1 0
0 0 1

]
Our computation to find this factorization is identical to the
Chamber Ansatz introduced by Berenstein-Fomin-Zelevinsky.
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Application: Counting matchings

Corollary

Let G be a reduced graph with positroid M. If A is a matrix with

the matroid of A is contained in M, and

for each face label I , the minor ∆I (A) = 1,

then the maximal minor ∆J(τ−1(A)) counts matchings with
boundary J.

Example: Domino tilings of the Aztec diamond of order 3

1

2

3

4

5

6 7

8

9

10

11

12

Domino tilings of this
shape...

...are the same as
matchings of this
graph, with boundary
{4, 5, 6, 10, 11, 12}.
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Application: Counting matchings

Example: (continued)

Here is an appropriate A and its inverse twist.

A =

 1 6 18 1 1 1 0 0 1 0 0 0
0 1 6 1 3 5 0 −1 0 0 0 0
0 0 1 1 5 13 1 0 0 0 0 0
0 0 0 1 6 18 2 2 2 0 0 1
0 0 0 0 1 6 2 6 10 0 −1 0
0 0 0 0 0 1 2 10 26 1 0 0


τ−1(A) =

 1 0 0 0 0 0 0 0 −1 −2 −2 −2
0 1 0 0 0 0 0 1 6 10 6 2
0 0 1 0 0 0 −1 −6 −18 −26 −10 −2
0 0 0 1 0 0 1 5 13 18 6 1
0 0 0 0 1 0 −1 −3 −5 −6 −1 0
0 0 0 0 0 1 1 1 1 1 0 0


We compute that ∆{4,5,6,10,11,12}(τ

−1(A)) = 64. X

Finding A by brute force is probably not efficient, but verifying that
a matrix has the necessary properties can be faster than counting.
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Further directions

Directions to generalize!

Positroid cells in Gr(k , n) → projected Richardson cells in
partial flag varieties.
Reduced graphs in the disc → ‘reduced graphs’ in surfaces.

If we label strands by their target instead of their source, we
get a different cluster structure on the same algebra. How are
they related?

Conjecture: The twist is the decategorification of the shift
functor in a categorification.
Any cluster algebra with a Jacobi-finite potential has such a
shift automorphism. Can this story can be extended?
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