◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Twists for positroid cells

Greg Muller, joint with David Speyer

December 10, 2014

Objects of study: positroid cells

The **matroid** of a $k \times n$ matrix is the set of subsets of columns which form a basis, written as k-subsets of $[n] := \{1, 2, ..., n\}$. A **positroid** is the matroid of a 'totally positive matrix': a real-valued matrix whose maximal minors are all non-negative.

A matroid \mathcal{M} defines a variety in the (k, n)-Grassmannian.

 $\Pi(\mathcal{M}) := \{ [A] \in Gr(k, n) \mid \text{the matroid of } A \subseteq \mathcal{M} \}$

Definition (Positroid cell)

The **positroid cell** of a positroid \mathcal{M} is

$$\mathsf{T}^{\circ}(\mathcal{M}) := \mathsf{\Pi}(\mathcal{M}) - igcup_{\mathsf{positroids}} \mathcal{M}' \subseteq \mathcal{M}} \mathsf{\Pi}(\mathcal{M}')$$

These cells define a well-behaved stratification of Gr(k, n).

Motivation from double Bruhat cells

Example (Double Bruhat cells)

Double Bruhat cells in GL(n) map to positroid cells under

$$GL(n) \hookrightarrow Gr(n, 2n), A \mapsto [\omega A]$$

where ω is the antidiagonal matrix of ones.

In a double Bruhat cell, the same data indexes two sets of subtori.

Berenstein-Fomin-Zelevinsky introduced a **twist** automorphism of the cell $GL^{u,v}$ which takes one type of torus to the other.

The need for a generalized twist

Postnikov described a generalization to all positroid cells.

However, it wasn't proven these constructions defined tori, and the generalized twist was missing for more than a decade! Then, Marsh-Scott found the twist for the open cell in Gr(k, n).

Our goal!

Inspired by MS, define the twist automorphism of every $\Pi^{\circ}(\mathcal{M})$.

As a corollary, we prove that the constructions produce tori.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

But first, we need to define ...

- \bullet a reduced graph with positroid $\mathcal{M},$
- its boundary measurement map

$$\mathbb B$$
 : a torus $\longrightarrow \Pi^{\circ}(\mathcal M),$

• and its (conjectural) cluster

$$\mathbb{F}: \Pi^{\circ}(\mathcal{M}) \dashrightarrow$$
 a torus.

Compared to that, the definition of the twist is elementary.

Matchings of graphs in the disc

Let G be a graph in the disc with a 2-coloring of its internal vertices. We assume each boundary vertex is adjacent to one white vertex, and no black or boundary vertices.

A matching of G is a subset of the edges for which every internal vertex is in exactly one edge. We assume a matching exists.

・ロト ・ 一下・ ・ モト・ ・ モト・

The positroid of a graph

Observation: Every matching of G must use

k := (# of white vertices) - (# of black vertices)

boundary vertices.

If we index the boundary vertices clockwise by [n], which k-element subsets of [n] are the boundary of matchings?

Theorem (Postnikov, Talaska, Postnikov-Speyer-Williams)

The k-element subsets of [n] which are the boundary of some matching of G form a positroid. Every positroid occurs this way.

A graph G is **reduced** if it has the minimal number of faces among all graphs with the same positroid as G.

Generating functions of matchings

More than asking if a subset $I \in {n \choose k}$ is a boundary, we can encode which matchings have boundary I into a generating function D_I .

Clearly, a generating function D_I is identically zero if and only if I is not in the positroid of G.

Relations between generating functions

Remarkably, the generating functions satisfy the Plücker relations! So, for a complex number at each edge of G, there is a matrix...

...whose Ith maximal minor equals the Ith generating function D_{I} ...

$D_{12} = bdgi$	$D_{13} = bdfj$	$\Delta_{12} = bdgi$	$\Delta_{13} = bdfj$
$D_{14} = adfh$	$D_{23} = begj$	$\Delta_{14} = \mathit{adfh}$	$\Delta_{23} = begj$
$D_{24} = acgi + aegh$	$D_{34} = acfj$	$\Delta_{24} = acgi + aegh$	$\Delta_{34} = \mathit{acfj}$

...and this matrix determines a well-defined point in Gr(k, n).

The boundary measurement map

Hence, we have a map

$$\mathbb{C}^{Edges(G)} \longrightarrow Gr(k, n)$$

This map is invariant under gauge transformations: simultaneously scaling the numbers at each edge incident to a fixed internal vertex.

Theorem (Postnikov, Talaska, M-Speyer)

For reduced G, the map
$$(\mathbb{C}^*)^{Edges(G)} \to Gr(k, n)$$
 factors through
 $\mathbb{B}: (\mathbb{C}^*)^{Edges(E)}/Gauge \longrightarrow \Pi^{\circ}(\mathcal{M})$

where \mathcal{M} is the positroid of G.

The map \mathbb{B} is called the **boundary measurement map**.

Conjecture (essentially Postnikov)

The map \mathbb{B} is an open inclusion.

Strands in a reduced graph

A strand in reduced G is a path which...

- passes through the midpoints of edges,
- turns right around white vertices,
- turns left around black vertices, and
- begins and ends at boundary vertices.

Index a strand by its source vertex, and label each face to the left of the strand by that label.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Face labels and the cluster structure

Repeating this for each strand, each face of G gets labeled by a subset of [n].

Each face label is a k-element subset of [n], which determines a Plücker coordinate on Gr(k, n).

Conjecture (essentially Postnikov)

The homogeneous coordinate ring of $\Pi^{\circ}(\mathcal{M})$ is a cluster algebra, and the Plücker coordinates of the faces of G form a cluster.

The conjecture implies the Plückers of the faces give a rational map $\mathbb{F}: \Pi^{\circ}(\mathcal{M}) \dashrightarrow (\mathbb{C}^*)^{Faces(G)}/Scaling$

which is an isomorphism on its domain (the cluster torus).

Two conjectural tori associated to a reduced graph

We now see that a reduced graph G with positroid \mathcal{M} determines two subspaces in $\Pi^{\circ}(\mathcal{M})$, which are both conjecturally tori.

• The image of the boundary measurement map

$$\mathbb{B}: (\mathbb{C}^*)^{Edges(G)}/\operatorname{Gauge} \longrightarrow \Pi^{\circ}(\mathcal{M})$$

• The domain of definition of the cluster of Plücker coordinates $\mathbb{F}: \Pi^{\circ}(\mathcal{M}) \dashrightarrow (\mathbb{C}^*)^{Faces(G)}/Scaling$

In a simple world, they'd coincide and we'd have an isomorphism $\mathbb{F} \circ \mathbb{B} : (\mathbb{C}^*)^{Edges(G)}/Gauge \xrightarrow{\sim} (\mathbb{C}^*)^{Faces(G)}/Scaling$

In the real world, we need a **twist** automorphism τ of $\Pi^{\circ}(\mathcal{M})$.

The twist of a matrix

Let A be a $k \times n$ matrix of rank k, and assume no zero columns. Denote the *i*th column of A by A_i , with cyclic indices: $A_{i+n} = A_i$.

Definition (The twist)

The **twist** $\tau(A)$ of A is the $k \times n$ -matrix defined on columns by

$$\tau(A)_i \cdot A_i = 1$$

 $\tau(A)_i \cdot A_j = 0$, if A_j is not in the span of $\{A_i, A_{i+1}, ..., A_{j-1}\}$

The columns A_i and $\{A_j\}$ in the definition are the 'first' basis of columns encountered when starting at column *i* and moving right.

The vector $\tau(A)_i$ is the left column of the inverse of the submatrix on these columns.

Example of a twist

Twisting a matrix

Consider the 3×4 matrix

$$\mathsf{A} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 2 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

The first column $\tau(A)_1$ of the twist is a 3-vector v, such that...

$$v \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 1, \quad v \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 0, \quad v \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ is already fixed, and } \quad v \cdot \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = 0$$

We see that $v = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$. We compute the twist matrix
$$\tau(A) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & 0 & -2 & 1 \end{bmatrix}$$

▲ロト▲聞と▲目と▲目と 目 のぐら

The twist on a positroid cell

Twisting matrices descends to a well-defined map of sets

$$Gr(k,n) \stackrel{\tau}{\longrightarrow} Gr(k,n)$$

However, this map is not continuous; the defining equations jump when A_j deforms to a column in the span of $\{A_i, A_{i+1}, ..., A_{j-1}\}$.

Proposition

The domains of continuity of τ are precisely the positroid cells.

Theorem (M-Speyer)

The twist τ restricts to a regular automorphism of $\Pi^{\circ}(\mathcal{M})$.

The inverse of τ is given by a virtually identical formula to τ , by reversing the order of the columns.

The induced map on tori

If τ takes the image of \mathbb{B} to the domain of \mathbb{F} , then the composition $\mathbb{F} \circ \tau \circ \mathbb{B} : (\mathbb{C}^*)^{Edges(G)}/Gauge \longrightarrow (\mathbb{C}^*)^{Faces(G)}/Scaling$

is a regular morphism. What is this map?

Minimal matchings

It looks like the entries are reciprocals of matchings! Which ones?

Proposition (Propp)

The set of matchings of G with fixed boundary I has a partial order, with a unique minimal and maximal element (if non-empty).

Lemma (M-Speyer)

If I is the label of a face in G, then

$$\Delta_I \circ \tau \circ \mathbb{B} = rac{1}{product \ of \ edges \ in \ M_I}$$

where M_I is the minimal matching with boundary I.

We have two direct constructions of these minimal matchings.

The isomorphism of model tori

We can collect these coordinates into a map

$$(\mathbb{C}^*)^{\textit{Edges}(\textit{G})} \longrightarrow (\mathbb{C}^*)^{\textit{Faces}(\textit{G})}$$

whose coordinate at a face labeled by I is the reciprocal of the product of the edges in the minimal matching with boundary I.

Lemma (M-Speyer)

The above map induces an isomorphism of algebraic tori $\mathbb{D}: (\mathbb{C}^*)^{Edges(E)}/Gauge \longrightarrow (\mathbb{C}^*)^{Faces(E)}/Scaling$

In fact, the inverse \mathbb{D}^{-1} can be induced from an explicit map $(\mathbb{C}^*)^{Faces(G)} \longrightarrow (\mathbb{C}^*)^{Edges(G)}$

whose coordinate at an edge only uses the two adjacent faces.

Putting it all together

Theorem (M-Speyer)

For each reduced graph G, there is a commutative diagram

Corollaries:

• The image of \mathbb{B} and the domain of \mathbb{F} are open algebraic tori in $\Pi^{\circ}(\mathcal{M})$, and τ takes one to the other.

- 31

- The (rational) inverse of \mathbb{B} is $\mathbb{D}^{-1} \circ \mathbb{F} \circ \tau$.
- The (regular) inverse of \mathbb{F} is $\tau \circ \mathbb{B} \circ \mathbb{D}^{-1}$.

Let's invert \mathbb{B} in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

ヘロト 人間ト 人団ト 人団ト

3

Let's invert \mathbb{B} in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

Let's invert \mathbb{B} in a classic example!

Let's invert \mathbb{B} in a classic example!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Let's invert ${\mathbb B}$ in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Let's invert ${\mathbb B}$ in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

▲ロ > ▲ 圖 > ▲ 国 > ▲ 国 > → 国 → の Q @

Relation to the Chamber Ansatz

So, we have the following boundary measurement map.

This is equivalent to a factorization into elementary matrices.

a	b	<i>c</i>]		a	0	0]	[1	<u>cd</u> ae	0]	[1	0	0]	Γ1	be-cd ae	0]
0	d	e	=	0	d	0	0	1	0	0	1	$\frac{e}{d}$	0	1	0
L0	0	f		L0	0	f	L0	0	1	0	0	ī	Γo	0	1

Our computation to find this factorization is identical to the *Chamber Ansatz* introduced by Berenstein-Fomin-Zelevinsky.

Application: Counting matchings

Corollary

Let G be a reduced graph with positroid \mathcal{M} . If A is a matrix with

- the matroid of A is contained in M, and
- for each face label I, the minor $\Delta_I(A) = 1$,

then the maximal minor $\Delta_J(\tau^{-1}(A))$ counts matchings with boundary J.

Example: Domino tilings of the Aztec diamond of order 3

Application: Counting matchings

Example: (continued)

Here is an appropriate A and its inverse twist.

Finding A by brute force is probably not efficient, but verifying that a matrix has the necessary properties can be faster than counting.

Further directions

- Directions to generalize!
 - Positroid cells in $Gr(k, n) \rightarrow projected$ Richardson cells in partial flag varieties.
 - $\bullet~$ Reduced graphs in the disc $\rightarrow~$ 'reduced graphs' in surfaces.
- If we label strands by their target instead of their source, we get a different cluster structure on the same algebra. How are they related?
- Conjecture: The twist is the decategorification of the shift functor in a categorification.

Any cluster algebra with a Jacobi-finite potential has such a **shift** automorphism. Can this story can be extended?