Twists for positroid cells

Greg Muller, joint with David Speyer

December 10, 2014

Objects of study: positroid cells

The matroid of a $k \times n$ matrix is the set of subsets of columns which form a basis, written as k-subsets of $[n]:=\{1,2, \ldots, n\}$. A positroid is the matroid of a 'totally positive matrix': a real-valued matrix whose maximal minors are all non-negative.

A matroid \mathcal{M} defines a variety in the (k, n)-Grassmannian.

$$
\Pi(\mathcal{M}):=\{[A] \in \operatorname{Gr}(k, n) \mid \text { the matroid of } A \subseteq \mathcal{M}\}
$$

Definition (Positroid cell)

The positroid cell of a positroid \mathcal{M} is

$$
\Pi^{\circ}(\mathcal{M}):=\Pi(\mathcal{M})-\bigcup_{\text {positroids } \mathcal{M}^{\prime} \subseteq \mathcal{M}} \Pi\left(\mathcal{M}^{\prime}\right)
$$

These cells define a well-behaved stratification of $\operatorname{Gr}(k, n)$.

Motivation from double Bruhat cells

Example (Double Bruhat cells)

Double Bruhat cells in $G L(n)$ map to positroid cells under

$$
G L(n) \hookrightarrow G r(n, 2 n), \quad A \mapsto\left[\begin{array}{ll}
\omega & A
\end{array}\right]
$$

where ω is the antidiagonal matrix of ones.
In a double Bruhat cell, the same data indexes two sets of subtori.

Berenstein-Fomin-Zelevinsky introduced a twist automorphism of the cell $G L^{u, v}$ which takes one type of torus to the other.

The need for a generalized twist

Postnikov described a generalization to all positroid cells.

However, it wasn't proven these constructions defined tori, and the generalized twist was missing for more than a decade!
Then, Marsh-Scott found the twist for the open cell in $\operatorname{Gr}(k, n)$.

Our goal!

 Inspired by MS, define the twist automorphism of every $\Pi^{\circ}(\mathcal{M})$.As a corollary, we prove that the constructions produce tori.

But first, we need to define...

- a reduced graph with positroid \mathcal{M},
- its boundary measurement map

$$
\mathbb{B}: \text { a torus } \longrightarrow \Pi^{\circ}(\mathcal{M})
$$

- and its (conjectural) cluster

$$
\mathbb{F}: \Pi^{\circ}(\mathcal{M}) \longrightarrow \text { a torus. }
$$

Compared to that, the definition of the twist is elementary.

Matchings of graphs in the disc

A matching of G is a subset of the edges for which every internal vertex is in exactly one edge. We assume a matching exists.

The positroid of a graph

Observation: Every matching of G must use

$$
k:=(\# \text { of white vertices })-(\# \text { of black vertices })
$$

boundary vertices.

If we index the boundary vertices clockwise by [n], which k-element subsets of [n] are the boundary of matchings?

Theorem (Postnikov, Talaska, Postnikov-Speyer-Williams)

The k-element subsets of [n] which are the boundary of some matching of G form a positroid. Every positroid occurs this way.

A graph G is reduced if it has the minimal number of faces among all graphs with the same positroid as G.

Generating functions of matchings

More than asking if a subset $I \in\binom{n}{k}$ is a boundary, we can encode which matchings have boundary I into a generating function D_{l}.

Example (Generating functions)

The $\binom{4}{2}$ generating functions are:

$$
\begin{array}{cl}
D_{12}=b d g i & D_{13}=b d f j \\
D_{14}=a d f h & D_{23}=b e g j \\
D_{24}=\text { acgi }+ \text { aegh } & D_{34}=a c f j
\end{array}
$$

Clearly, a generating function D_{l} is identically zero if and only if I is not in the positroid of G.

Relations between generating functions

Remarkably, the generating functions satisfy the Plücker relations! So, for a complex number at each edge of G, there is a matrix...

...whose /th maximal minor equals the $/$ th generating function $D_{I} \ldots$

$$
\begin{array}{cl}
\hline D_{12}=b d g i & D_{13}=b d f j \\
D_{14}=a d f h & D_{23}=b e g j \\
D_{24}=a c g i+a e g h & D_{34}=a c f j
\end{array} \quad\left[\begin{array}{cc}
\Delta_{12}=b d g i & \Delta_{13}=b d f j \\
\Delta_{14}=a d f h & \Delta_{23}=b e g j \\
\Delta_{24}=a c g i+\text { aegh } & \Delta_{34}=a c f j \\
\hline
\end{array}\right.
$$

...and this matrix determines a well-defined point in $\operatorname{Gr}(k, n)$.

The boundary measurement map

Hence, we have a map

$$
\mathbb{C}^{\operatorname{Edges}(G)} \longrightarrow \operatorname{Gr}(k, n)
$$

This map is invariant under gauge transformations: simultaneously scaling the numbers at each edge incident to a fixed internal vertex.

Theorem (Postnikov, Talaska, M-Speyer)

For reduced G, the map $\left(\mathbb{C}^{*}\right)^{E d g e s}(G) \rightarrow G r(k, n)$ factors through

$$
\mathbb{B}:\left(\mathbb{C}^{*}\right)^{\text {Edges }(E)} / \text { Gauge } \longrightarrow \Pi^{\circ}(\mathcal{M})
$$

where \mathcal{M} is the positroid of G.
The map \mathbb{B} is called the boundary measurement map.
Conjecture (essentially Postnikov)
The map \mathbb{B} is an open inclusion.

Strands in a reduced graph

A strand in reduced G is a path which...

- passes through the midpoints of edges,
- turns right around white vertices,
- turns left around black vertices, and
- begins and ends at boundary vertices.

Index a strand by its source vertex, and label each face to the left of the strand by that label.

Face labels and the cluster structure

Repeating this for each strand, each face of G gets labeled by a subset of $[n]$.

Each face label is a k-element subset of [n], which determines a Plücker coordinate on $\operatorname{Gr}(k, n)$.

Conjecture (essentially Postnikov)

The homogeneous coordinate ring of $\Pi^{\circ}(\mathcal{M})$ is a cluster algebra, and the Plücker coordinates of the faces of G form a cluster.

The conjecture implies the Plückers of the faces give a rational map

$$
\mathbb{F}: \Pi^{\circ}(\mathcal{M}) \longrightarrow\left(\mathbb{C}^{*}\right)^{\operatorname{Faces}(G)} / \text { Scaling }
$$

which is an isomorphism on its domain (the cluster torus).

Two conjectural tori associated to a reduced graph

We now see that a reduced graph G with positroid \mathcal{M} determines two subspaces in $\Pi^{\circ}(\mathcal{M})$, which are both conjecturally tori.

- The image of the boundary measurement map

$$
\mathbb{B}:\left(\mathbb{C}^{*}\right)^{\operatorname{Edges}(G)} / \text { Gauge } \longrightarrow \Pi^{\circ}(\mathcal{M})
$$

- The domain of definition of the cluster of Plücker coordinates

$$
\mathbb{F}: \Pi^{\circ}(\mathcal{M}) \longrightarrow\left(\mathbb{C}^{*}\right)^{F a c e s(G)} / \text { Scaling }
$$

In a simple world, they'd coincide and we'd have an isomorphism

$$
\mathbb{F} \circ \mathbb{B}:\left(\mathbb{C}^{*}\right)^{\operatorname{Edges}(G)} / \text { Gauge } \xrightarrow{\sim}\left(\mathbb{C}^{*}\right)^{\text {Faces }(G)} / \text { Scaling }
$$

In the real world, we need a twist automorphism τ of $\Pi^{\circ}(\mathcal{M})$.

The twist of a matrix

Let A be a $k \times n$ matrix of rank k, and assume no zero columns. Denote the i th column of A by A_{i}, with cyclic indices: $A_{i+n}=A_{i}$.

Definition (The twist)

The twist $\tau(A)$ of A is the $k \times n$-matrix defined on columns by

$$
\tau(A)_{i} \cdot A_{i}=1
$$

$\tau(A)_{i} \cdot A_{j}=0, \quad$ if A_{j} is not in the span of $\left\{A_{i}, A_{i+1}, \ldots, A_{j-1}\right\}$

The columns A_{i} and $\left\{A_{j}\right\}$ in the definition are the 'first' basis of columns encountered when starting at column i and moving right.

The vector $\tau(A)_{i}$ is the left column of the inverse of the submatrix on these columns.

Example of a twist

Twisting a matrix

Consider the 3×4 matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The first column $\tau(A)_{1}$ of the twist is a 3 -vector v, such that...
$v \cdot\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=1, \quad v \cdot\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=0, \quad v \cdot\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is already fixed, and $\quad v \cdot\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]=0$
We see that $v=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$. We compute the twist matrix

$$
\tau(A)=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
2 & 0 & -2 & 1
\end{array}\right]
$$

The twist on a positroid cell

Twisting matrices descends to a well-defined map of sets

$$
\operatorname{Gr}(k, n) \xrightarrow{\tau} \operatorname{Gr}(k, n)
$$

However, this map is not continuous; the defining equations jump when A_{j} deforms to a column in the span of $\left\{A_{i}, A_{i+1}, \ldots, A_{j-1}\right\}$.

Proposition

The domains of continuity of τ are precisely the positroid cells.

Theorem (M-Speyer)

The twist τ restricts to a regular automorphism of $\Pi^{\circ}(\mathcal{M})$.
The inverse of τ is given by a virtually identical formula to τ, by reversing the order of the columns.

The induced map on tori

If τ takes the image of \mathbb{B} to the domain of \mathbb{F}, then the composition

$$
\mathbb{F} \circ \tau \circ \mathbb{B}:\left(\mathbb{C}^{*}\right)^{\operatorname{Edges}(G)} / \text { Gauge } \longrightarrow\left(\mathbb{C}^{*}\right)^{\text {Faces }(G)} / \text { Scaling }
$$

is a regular morphism. What is this map?
Example: the open cell of $\operatorname{Gr}(2,4)$

$$
\left[\begin{array}{cccc}
b d & \frac{b e g}{f} & 0 & -a c \\
0 & g i & f j & \frac{a f h}{b}
\end{array}\right] \xrightarrow{\tau}\left[\begin{array}{cccc}
\frac{1}{b d} & \frac{f}{b e g} & \frac{h}{b c j} & 0 \\
-\frac{e}{d f i} & 0 & \frac{1}{f j} & \frac{b}{a f h}
\end{array}\right]
$$

Minimal matchings

It looks like the entries are reciprocals of matchings! Which ones?

Proposition (Propp)

The set of matchings of G with fixed boundary I has a partial order, with a unique minimal and maximal element (if non-empty).

Lemma (M-Speyer)

If I is the label of a face in G, then

$$
\Delta_{l} \circ \tau \circ \mathbb{B}=\frac{1}{\text { product of edges in } M_{l}}
$$

where M_{I} is the minimal matching with boundary I.
We have two direct constructions of these minimal matchings.

The isomorphism of model tori

We can collect these coordinates into a map

$$
\left(\mathbb{C}^{*}\right)^{\operatorname{Edges}(G)} \longrightarrow\left(\mathbb{C}^{*}\right)^{\operatorname{Faces}(G)}
$$

whose coordinate at a face labeled by I is the reciprocal of the product of the edges in the minimal matching with boundary l.

Lemma (M-Speyer)

The above map induces an isomorphism of algebraic tori

$$
\mathbb{D}:\left(\mathbb{C}^{*}\right)^{\text {Edges }(E)} / \text { Gauge } \longrightarrow\left(\mathbb{C}^{*}\right)^{\text {Faces }(E)} / \text { Scaling }
$$

In fact, the inverse \mathbb{D}^{-1} can be induced from an explicit map

$$
\left(\mathbb{C}^{*}\right)^{\operatorname{Faces}(G)} \longrightarrow\left(\mathbb{C}^{*}\right)^{\operatorname{Edges}(G)}
$$

whose coordinate at an edge only uses the two adjacent faces.

Putting it all together

Theorem (M-Speyer)

For each reduced graph G, there is a commutative diagram

Corollaries:

- The image of \mathbb{B} and the domain of \mathbb{F} are open algebraic tori in $\Pi^{\circ}(\mathcal{M})$, and τ takes one to the other.
- The (rational) inverse of \mathbb{B} is $\mathbb{D}^{-1} \circ \mathbb{F} \circ \tau$.
- The (regular) inverse of \mathbb{F} is $\tau \circ \mathbb{B} \circ \mathbb{D}^{-1}$.

Application: Inverting the boundary measurement map

Let's invert \mathbb{B} in a classic example!
Example: The unipotent cell in $G L(3)$, as a positroid cell

Application: Inverting the boundary measurement map

Let's invert \mathbb{B} in a classic example!
Example: The unipotent cell in $G L(3)$, as a positroid cell

$$
\left[\begin{array}{cccccc}
0 & 0 & 1 & a & b & c \\
0 & -1 & 0 & 0 & d & e \\
1 & 0 & 0 & 0 & 0 & f
\end{array}\right]
$$

Application: Inverting the boundary measurement map

Let's invert \mathbb{B} in a classic example!
Example: The unipotent cell in $G L(3)$, as a positroid cell

$$
\left[\begin{array}{cccccc}
0 & 0 & 1 & a & b & c \\
0 & -1 & 0 & 0 & d & e \\
1 & 0 & 0 & 0 & 0 & f
\end{array}\right] \longmapsto \tau \quad\left[\begin{array}{cccccc}
0 & 0 & 1 & \frac{1}{a} & \frac{e}{b d-c e} & \frac{1}{c} \\
0 & -1 & \frac{-b}{d} & \frac{-b}{a d} & \frac{-c}{b e-c d} & 0 \\
1 & \frac{e}{f} & \frac{b e-c d}{d f} & \frac{b e-c d}{a d f} & 0 & 0
\end{array}\right]
$$

Application: Inverting the boundary measurement map

Let's invert \mathbb{B} in a classic example!
Example: The unipotent cell in $G L(3)$, as a positroid cell

Application: Inverting the boundary measurement map

Let's invert \mathbb{B} in a classic example!
Example: The unipotent cell in $G L(3)$, as a positroid cell

Application: Inverting the boundary measurement map

Let's invert \mathbb{B} in a classic example!
Example: The unipotent cell in $G L(3)$, as a positroid cell

Relation to the Chamber Ansatz

So, we have the following boundary measurement map.

$$
\xrightarrow{\mathbb{B}}\left[\begin{array}{cccccc}
0 & 0 & 1 & a & b & c \\
0 & -1 & 0 & 0 & d & e \\
1 & 0 & 0 & 0 & 0 & f
\end{array}\right]
$$

This is equivalent to a factorization into elementary matrices.

$$
\left[\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right]=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & d & 0 \\
0 & 0 & f
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{c d}{a e} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & \frac{e}{d} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{b e-c d}{a e} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Our computation to find this factorization is identical to the Chamber Ansatz introduced by Berenstein-Fomin-Zelevinsky.

Application: Counting matchings

Corollary

Let G be a reduced graph with positroid \mathcal{M}. If A is a matrix with

- the matroid of A is contained in \mathcal{M}, and
- for each face label I, the minor $\Delta_{l}(A)=1$,
then the maximal minor $\Delta_{J}\left(\tau^{-1}(A)\right)$ counts matchings with boundary J.

Example: Domino tilings of the Aztec diamond of order 3

Domino tilings of this shape...
...are the same as matchings of this graph, with boundary $\{4,5,6,10,11,12\}$.

Application: Counting matchings

Example: (continued)

Here is an appropriate A and its inverse twist.

$$
\begin{aligned}
& A=\left[\begin{array}{cccccccccccc}
1 & 6 & 18 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 6 & 1 & 3 & 5 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 5 & 13 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 6 & 18 & 2 & 2 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 6 & 2 & 6 & 10 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 10 & 26 & 1 & 0 & 0
\end{array}\right] \\
& \tau^{-1}(A)=\left[\begin{array}{llllllccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & -2 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 6 & 10 & 6 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & -6 & -18 & -26 & -10 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 5 & 13 & 18 & 6 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & -3 & -5 & -6 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0
\end{array}\right]
\end{aligned}
$$

We compute that $\Delta_{\{4,5,6,10,11,12\}}\left(\tau^{-1}(A)\right)=64$.
Finding A by brute force is probably not efficient, but verifying that a matrix has the necessary properties can be faster than counting.

Further directions

- Directions to generalize!
- Positroid cells in $\operatorname{Gr}(k, n) \rightarrow$ projected Richardson cells in partial flag varieties.
- Reduced graphs in the disc \rightarrow 'reduced graphs' in surfaces.
- If we label strands by their target instead of their source, we get a different cluster structure on the same algebra. How are they related?
- Conjecture: The twist is the decategorification of the shift functor in a categorification.
Any cluster algebra with a Jacobi-finite potential has such a shift automorphism. Can this story can be extended?

