Finite-order approximations of scattering diagrams

Greg Muller

University of Michigan
June 2, 2015

Motivation

Scattering diagrams are piece-wise linear geometric objects which can be used to visualize the exchange graph of a cluster algebra and construct a canonical basis (in many cases).

Yet they may be defined without ever referring to cluster algebras!
At heart, they are a geometric visualization of commutation relations inside a group $\widehat{\mathbb{E}}(\mathrm{B})$; equivalently, a commutative diagram involving ring automorphisms called elementary transformations.

The initial ingredient is a skew-symmetric $r \times r$ integral matrix B .

$$
\widehat{\mathcal{F}}(\mathrm{B}):=\mathbb{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right]\left[\left[y_{1}, y_{2}, \ldots, y_{r}\right]\right]
$$

Some notation! Let $m \in \mathbb{Z}^{r}$.

$$
x^{m}:=x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{r}^{m_{r}}, \quad \operatorname{gcd}(m):=\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{r}\right)
$$

Def: Formal elementary transformations

For non-zero $n \in \mathbb{N}^{r}$, the formal elementary transformation $E_{n, \mathrm{~B}}$ is the automorphism of $\widehat{\mathcal{F}}(B)$ given by

$$
E_{n, \mathrm{~B}}\left(x^{m}\right)=\left(1+x^{\mathrm{B} n} y^{n}\right)^{\frac{n \cdot m}{\operatorname{gcc}(n)}} x^{m}, \quad E_{n, \mathrm{~B}}\left(y^{n^{\prime}}\right)=y^{n^{\prime}}
$$

While $\frac{n \cdot m}{\operatorname{gcd}(n)}$ must be an integer, it may be negative (that's ok!).

Throughout, $\mathrm{J}:=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is the simplest non-trivial B.

Examples!

Let $\mathrm{B}=\mathrm{J}$.

$$
\begin{gathered}
E_{(1,0)}\left(x_{1}\right)=\left(1+x_{2} y_{1}\right) x_{1}, \quad E_{(1,0)}\left(x_{2}\right)=x_{2} \\
E_{(1,0)}\left(x_{1}^{-1}\right)=x_{1}\left(1-x_{2} y_{1}+x_{2}^{2} y_{1}^{2}-x_{2}^{3} y_{1}^{3}+\cdots\right) \\
E_{(0,1)} E_{(1,0)}\left(x_{2}\right)=\left(1+\left(1+x_{1}^{-1} y_{2}\right) x_{2} y_{1}\right) x_{2} \\
E_{(1,0)} E_{(0,1)}\left(x_{2}\right)=\left(1+x_{2} y_{1}\right) x_{2}
\end{gathered}
$$

Exercise

For any B , let $n, n^{\prime} \in \mathbb{N}^{r}$ be such that $n \cdot \mathrm{~B} n^{\prime}=1$. Prove that

$$
E_{n} E_{n^{\prime}}=E_{n^{\prime}} E_{n+n^{\prime}} E_{n}
$$

as automorphisms of $\widehat{\mathcal{F}}$.
This fundamental relation implies others. Let $\mathrm{B}, n, n^{\prime}$ as above.

$$
\begin{aligned}
E_{n}^{2} E_{n^{\prime}} & =E_{n}\left(E_{n^{\prime}} E_{n+n^{\prime}} E_{n}\right) \\
& =\left(E_{n^{\prime}} E_{n+n^{\prime}} E_{n}\right) E_{n+n^{\prime}} E_{n} \\
& =E_{n^{\prime}} E_{n+n^{\prime}}^{2} E_{2 n+n^{\prime}} E_{n}^{2}
\end{aligned}
$$

Exercise

Let $\mathrm{B}, n, n^{\prime}$ as above. Prove that

$$
E_{n}^{3} E_{n^{\prime}}=E_{n^{\prime}} E_{n+n^{\prime}}^{3} E_{3 n+2 n^{\prime}} E_{2 n+n^{\prime}}^{3} E_{3 n+n^{\prime}} E_{n}^{3}
$$

by repeatedly using the fundamental relation.

We also want to have infinite limits of automorphisms. Since $\widehat{\mathcal{F}}$ is a topological ring, $\operatorname{Aut}(\widehat{\mathcal{F}})$ has a topology of pointwise convergence.

$$
\widehat{\mathbb{E}}(\mathrm{B}):=\overline{\text { group generated by }\left\{E_{n, \mathrm{~B}} \mid n \in \mathbb{N}^{r}\right\}} \subset \operatorname{Aut}(\widehat{\mathcal{F}}(\mathrm{B}))
$$

Elements of $\widehat{\mathbb{E}}(B)$ are infinite products of FETs and their inverses, which have finitely many copies of any given element.

Exercise

Let B and n be arbitrary. Prove that

$$
E_{n} E_{2 n} E_{4 n} E_{8 n} \cdots E_{2^{k} n} \cdots
$$

converges to the automorphism of $\widehat{\mathcal{F}}$ which sends

$$
x^{m} \mapsto\left(1-x^{\mathrm{Bn}} y^{n}\right)^{-\frac{n \cdot m}{\operatorname{gcd}(n)}} x^{m} \text { and } y^{n^{\prime}} \mapsto y^{n^{\prime}}
$$

It will often be useful to work with $\widehat{\mathbb{E}}(\mathrm{B})$ to finite order. Let

$$
\mathfrak{m}:=\left\langle y_{1}, y_{2}, \ldots, y_{r}\right\rangle \subset \widehat{\mathcal{F}}
$$

Each $E_{n, \mathrm{~B}}$ descends to an automorphism of $\widehat{\mathcal{F}} / \mathfrak{m}^{d}$ for all d. Then

$$
\widehat{\mathbb{E}}(\mathrm{B})=\lim _{\longleftarrow}\left(\text { group gen. by }\left\{E_{n, \mathrm{~B}} \mid n \in \mathbb{N}^{r}\right\} \subset \operatorname{Aut}\left(\widehat{\mathcal{F}}(\mathrm{B}) / \mathfrak{m}^{d}\right)\right)
$$

That is, we only need finite products when working to finite order.

Exercise

Let $\mathrm{B}, n, n^{\prime}$ be arbitrary. Prove that

$$
E_{n} E_{n^{\prime}}=E_{n^{\prime}} E_{n} \text { in } \operatorname{Aut}\left(\widehat{\mathcal{F}} / \mathfrak{m}^{d}\right)
$$

if $y^{n+n^{\prime}} \in \mathfrak{m}^{d}$, and that

$$
E_{n} E_{n^{\prime}}=E_{n^{\prime}} E_{n+n^{\prime}}^{\lambda} E_{n} \text { in } \operatorname{Aut}\left(\widehat{\mathcal{F}} / \mathfrak{m}^{d}\right), \lambda=\frac{n \cdot \operatorname{Bn} n^{\prime} \operatorname{gcd}\left(n+n^{\prime}\right)}{\operatorname{gcd}(n) \operatorname{gcd}\left(n^{\prime}\right)}
$$

if $y^{2 n+n^{\prime}}, y^{n+2 n^{\prime}} \in \mathfrak{m}^{d}$.

Goal

Use affine geometric objects to visualize relations in $\widehat{\mathbb{E}}(B)$.
Commutative diagrams will become consistent scattering diagrams!

Elementary walls

Given B , an (affine elementary) wall is a pair (n, W) of

- a non-zero $n \in \mathbb{N}^{r}$, and
- an affine polyhedral cone $W \subset \mathbb{R}^{r}$ which spans an affine hyperplane normal to n.

If $r=2, W$ must be a line or a ray in \mathbb{R}^{2}.

Scattering diagrams

Given B, an (affine) scattering diagram is a multiset of walls which, for each n, has only finitely many walls with that n.

Examples

Let $B=J$. Then an example scattering diagram is below.

$$
n=(1,0)
$$

Note that n is determined by W and $\operatorname{gcd}(n)$.
Lazyness: Unlabeled walls have $\operatorname{gcd}(n)=1$.

Geometric/algebraic correspondence: idea

A wall is a 'prism' which acts by E_{n} as we pass through it from side n points in, and by E_{n}^{-1} the other way.

Following this rule, we associate a path-ordered product to any path p in \mathfrak{D} which avoids collisions of non-parallel walls.

Example

Path-ordered product:

$$
E_{(0,1)}^{-1} E_{(1,0)} E_{(1,1)} E_{(1,1)}^{-1} E_{(1,1)} E_{(0,1)}
$$

Consistency

A scattering diagram is consistent (resp. consistent mod \mathfrak{m}^{d}) if every pair of paths with the same end points have the same path-ordered product in $\operatorname{Aut}(\widehat{\mathcal{F}})\left(\operatorname{resp} . \operatorname{Aut}\left(\widehat{\mathcal{F}} / \mathfrak{m}^{d}\right)\right)$.

Sufficient condition: the POP of every small loop is the identity.

Example

Path-ordered prod. of $p_{1}=E_{(0,1)} E_{(1,0)}$
Path-ordered prod. of $p_{2}=E_{(1,0)} E_{(1,1)} E_{(0,1)}$
Consistent by fund. relation \checkmark

Exercise

Prove that a scattering diagram consisting of walls supported on hyperplanes is consistent $\bmod \mathfrak{m}^{2}$.

Consistent scattering diagrams encode multiple identities in $\widehat{\mathbb{E}}(\mathrm{B})$.

Example

Claim: The following scattering diagram with $B=J$ is consistent.

Consistent scattering diagrams encode multiple identities in $\widehat{\mathbb{E}}(\mathrm{B})$.

Example

Claim: The following scattering diagram with $B=J$ is consistent.

$$
E_{(0,1)}^{2} E_{(1,0)}
$$

Consistent scattering diagrams encode multiple identities in $\widehat{\mathbb{E}}(\mathrm{B})$.

Example

Claim: The following scattering diagram with $B=J$ is consistent.

$$
\begin{aligned}
& E_{(0,1)}^{2} E_{(1,0)} \\
& \quad=E_{(0,1)} E_{(1,0)} E_{(1,1)} E_{(0,1)}
\end{aligned}
$$

Consistent scattering diagrams encode multiple identities in $\widehat{\mathbb{E}}(\mathrm{B})$.

Example

Claim: The following scattering diagram with $\mathrm{B}=\mathrm{J}$ is consistent.

$$
\begin{aligned}
E_{(0,1)}^{2} & E_{(1,0)} \\
& =E_{(0,1)} E_{(1,0)} E_{(1,1)} E_{(0,1)} \\
& =E_{(1,0)} E_{(1,1)} E_{(0,1)} E_{(1,1)} E_{(0,1)}
\end{aligned}
$$

Consistent scattering diagrams encode multiple identities in $\widehat{\mathbb{E}}(\mathrm{B})$.

Example

Claim: The following scattering diagram with $\mathrm{B}=\mathrm{J}$ is consistent.

$$
\begin{aligned}
E_{(0,1)}^{2} & E_{(1,0)} \\
& =E_{(0,1)} E_{(1,0)} E_{(1,1)} E_{(0,1)} \\
& =E_{(1,0)} E_{(1,1)} E_{(0,1)} E_{(1,1)} E_{(0,1)} \\
& =E_{(1,0)} E_{(1,1)}^{2} E_{(1,2)} E_{(0,1)}^{2}
\end{aligned}
$$

A wall (n, W) is outgoing if $\left\{p+\mathbb{R}_{\geq 0} B n\right\} \not \subset W$ for all $p \in \mathbb{R}^{r}$.

Consistent completion theorem [GSP, KS, GHKK]

Given a scattering diagram consistent mod \mathfrak{m}^{d}, there is an essentially unique way to add outgoing walls to make it consistent.

The proof is constructive, and adds new walls order-by-order.

- Given a scattering diagram consistent mod \mathfrak{m}^{d}, compute the path-ordered product around tiny loops mod \mathfrak{m}^{d+1}.
- Add outgoing walls to make these products trivial. (It should not be obvious how to do this yet!)
- Repeat, and take the limit as $d \rightarrow \infty$.

For consistency mod $\mathfrak{m}^{d^{\prime}}$, stop after $\left(d^{\prime}-d\right)$-many steps.

Sage Goal 1

Implement the consistent completion algorithm to finite-order.

Sage Goal 1

Implement the consistent completion algorithm to finite-order.
Goal 1 Status: Crudely implemented for $\mathrm{B}=\mathrm{J}$.
Class: ScatteringDiagram (walls)
A finite-order scattering diagram for J , where walls is a list of

- SDWall (n , point=p): a wall normal to n through p .

Some associated methods:

- .improve () adds outgoing walls to increase order of consistency by one.
- .draw() plots the walls and collisions.

How do we actually find the outgoing walls for .improve()?

Wherever two walls collide with n_{1}, n_{2} such that $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$, the fundamental relation says: add a wall with normal $n_{1}+n_{2}$.

Example

Let $\mathrm{B}=\mathrm{J}$, as usual. Start with 4 hyperplane walls.

Consistent $\bmod \mathfrak{m}^{2}$

Wherever two walls collide with n_{1}, n_{2} such that $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$, the fundamental relation says: add a wall with normal $n_{1}+n_{2}$.

Example

Let $B=J$, as usual. Start with 4 hyperplane walls.

Consistent mod \mathfrak{m}^{3}

Wherever two walls collide with n_{1}, n_{2} such that $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$, the fundamental relation says: add a wall with normal $n_{1}+n_{2}$.

Example

Let $\mathrm{B}=\mathrm{J}$, as usual. Start with 4 hyperplane walls.

Consistent mod \mathfrak{m}^{4}

Wherever two walls collide with n_{1}, n_{2} such that $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$, the fundamental relation says: add a wall with normal $n_{1}+n_{2}$.

Example

Let $B=J$, as usual. Start with 4 hyperplane walls.

Consistent mod \mathfrak{m}^{5}

Wherever two walls collide with n_{1}, n_{2} such that $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$, the fundamental relation says: add a wall with normal $n_{1}+n_{2}$.

Example

Let $\mathrm{B}=\mathrm{J}$, as usual. Start with 4 hyperplane walls.

Consistent $\bmod \mathfrak{m}^{6}$

Wherever two walls collide with n_{1}, n_{2} such that $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$, the fundamental relation says: add a wall with normal $n_{1}+n_{2}$.

Example

Let $\mathrm{B}=\mathrm{J}$, as usual. Start with 4 hyperplane walls.

In fact, consistent!

Example

Let $B=J$, as usual. Start with 4 hyperplane walls.

Consistent mod \mathfrak{m}^{2}

Example

Let $B=J$, as usual. Start with 4 hyperplane walls.

Consistent mod \mathfrak{m}^{3}

Example

Let $B=J$, as usual. Start with 4 hyperplane walls.

Consistent $\bmod \mathfrak{m}^{4}$

Example

Let $\mathrm{B}=\mathrm{J}$, as usual. Start with 4 hyperplane walls.

Consistent $\bmod \mathfrak{m}^{4}$

We have gone as far as the fund. relation will take us...or have we?

For any $t \in \mathbb{Q}$, we can define a t th root of $E_{n, B}$

$$
E_{n, \mathrm{~B}}^{t}: \mathbb{Q} \otimes \widehat{\mathcal{F}}(\mathrm{B}) \rightarrow \mathbb{Q} \otimes \widehat{\mathcal{F}}(\mathrm{B})
$$

using formal power series. Define

$$
\widehat{\mathbb{E}}^{\mathbb{Q}}(\mathrm{B}):=\overline{\text { group gen. by }\left\{E_{n, \mathrm{~B}}^{d} \mid n \in \mathbb{N}^{r}, d \in \mathbb{Q}\right\}}
$$

Reduction to the simplest B

Let B be arbitrary, and $n_{1}, n_{2} \in \mathbb{N}^{r}$ such that $n_{1} \cdot \mathrm{~B} n_{2} \neq 0$. Let $\mathrm{J}:=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. Then there is a continuous inclusion

$$
\Psi: \widehat{\mathbb{E}}^{\mathbb{Q}}(\mathrm{J}) \hookrightarrow \widehat{\mathbb{E}}^{\mathbb{Q}}(\mathrm{B}), \quad \Psi\left(E_{\left(a_{1}, a_{2}\right), \mathrm{J}}^{d}\right)=E_{a_{1} n_{1}+a_{2} n_{2}, \mathrm{~B}}^{\frac{d g \operatorname{gcd}\left(a_{1} n_{1}+a_{2} n_{2}\right)}{\left(n_{1} \cdot n_{2}\right) \operatorname{gcca}\left(a_{1}, a_{2}\right)}}
$$

Example

Let B be arbitrary, and let $n, n^{\prime} \in \mathbb{N}^{r}$ such that $n \cdot \mathrm{~B} n^{\prime}=1$. Then

$$
\Psi\left(E_{(1,0), \mathrm{J}}\right)=E_{n, \mathrm{~B}}, \quad \Psi\left(E_{(1,1), \mathrm{J}}\right)=E_{n+n^{\prime}, \mathrm{B}}, \quad \Psi\left(E_{(0,1), \mathrm{J}}\right)=E_{n^{\prime}, \mathrm{B}}
$$

Hence, the fundamental relation may be deduced from one case:

$$
E_{(1,0)} E_{(0,1)}=E_{(0,1)} E_{(1,1)} E_{(1,0)} \Rightarrow E_{n} E_{n^{\prime}}=E_{n^{\prime}} E_{n+n^{\prime}} E_{n}
$$

Example

Let B be arbitrary, and let $n, n^{\prime} \in \mathbb{N}^{r}$ such that $n \cdot \mathrm{~B} n^{\prime}=1$. Then

$$
\Psi\left(E_{(1,0), \mathrm{J}}^{2}\right)=E_{n, \mathrm{~B}}, \quad \Psi\left(E_{(0,1), \mathrm{J}}^{2}\right)=E_{n^{\prime}, \mathrm{B}}
$$

What walls do we need to add to an arbitrary collision?
Key trick: all consistent collisions between pairs of walls reduces to understanding certain consistent scattering diagrams for $\mathrm{B}=\mathrm{J}$.

$$
\mathfrak{D}(b, c):=\text { cons. comp. of }\left\{b \cdot\left(e_{1}, e_{1}^{\perp}\right), c \cdot\left(e_{2}, e_{2}^{\perp}\right)\right\} \text { for } \mathrm{B}=\mathrm{J}
$$

These diagrams help us understand generic collisions as follows.

Local models for generic collisions (rough idea)

A collision between two walls $\left(n_{1}, W_{1}\right)$ and $\left(n_{2}, W_{2}\right)$ in a consistent scattering diagram is locally equivalent to an affine transformation of $\mathfrak{D}\left(\frac{n_{1} \cdot \mathrm{~B} n_{2}}{\operatorname{gcd}\left(n_{1}\right)}, \frac{n_{1} \cdot B n_{2}}{\operatorname{gcd}\left(n_{2}\right)}\right)$, though the wall multiplicities can change.

Simple example

Consider the consistent scattering diagram below.

Simple example

Consider the consistent scattering diagram below.

Simple example

Consider the consistent scattering diagram below.

So, $\mathfrak{D}(1,1)$ tells us what we already know about consistent completions of pairs of walls with $n_{1} \cdot \mathrm{~B} n_{2}= \pm 1$.

Great! So, how can we compute the other $\mathfrak{D}(b, c)$?

We can find $\mathfrak{D}(b, c)$ by taking the input walls, perturbing them, computing the cons. comp., and then linearizing the walls.

Examples

Let's return to the problem from before!

Example (resumed)

Let's return to the problem from before!

Example (resumed)

Let's return to the problem from before!

Example (resumed)

Let's return to the problem from before!

Example (resumed)

Dang it! Back where we started! Problem:
We need $\mathfrak{D}(2,2)$ to compute $\mathfrak{D}(2,2)$

Let's return to the problem from before!

Example (resumed)

Dang it! Back where we started! Solution:
We need $\mathfrak{D}(2,2) \bmod \mathfrak{m}^{d}$ to compute $\mathfrak{D}(2,2) \bmod \mathfrak{m}^{2 d}$

A giant recursive computation

$\mathfrak{D}(b, c)$ may be computed to any finite order, using only finitely many scattering diagrams of the form $\mathfrak{D}\left(b^{\prime}, c^{\prime}\right)$ to lower order.

Hence, approximating any $\mathfrak{D}(b, c)$ to any finite order is suitable to computer implementation!

Since these are the building blocks of all consistent scattering diagrams, this is a great place to start.

Sage Goal 1.A

Implement a table of finite-order approximations of scattering diagrams of the form $\mathfrak{D}(b, c)$, which dynamically increases each diagram's order as needed by internal and external computations.

Goal 1.A status: Crudely implemented.

Class: SDTable()

Initializes a dictionary of model scattering diagrams.

- .diagrams: A dictionary with key:value pairs
(b, c) : the current finite-order approx. of $\mathfrak{D}(b, c)$
- .multiplicity ($(\mathrm{b}, \mathrm{c}), \mathrm{n})$: Returns the multiplicity of the wall with normal n in $\mathfrak{D}(b, c)$.
- .mtable ($(\mathrm{b}, \mathrm{c}), \mathrm{d})$: Prints a table of multiplicities in $\mathfrak{D}(b, c)$ with order $\leq d$.
Both methods create and improve diagrams as needed to achieve the required order of consistency.

Sage Goal 1.B

Implement linear scattering diagrams with $r=3$ with corresponding .improve().

Reasons linear scattering diagrams with $r=3$ shouldn't be so bad:

- Collisions between walls are a line or ray.
- Maybe visualized using stereographic projection.
- Are completely determined by a certain 2-dimensional 'slice'.

Intuitively, linear $r=3$ is still 'essentially 2 dimensional'.

Sage Goal 1.B

Implement linear scattering diagrams with $r=3$ with corresponding .improve().

Reasons linear scattering diagrams with $r=3$ shouldn't be so bad:

- Collisions between walls are a line or ray.
- Maybe visualized using stereographic projection.
- Are completely determined by a certain 2-dimensional 'slice'. Intuitively, linear $r=3$ is still 'essentially 2 dimensional'.

Goal 1.B Status: Not implemented (some stereo. proj. code).

Example

Consider a scattering diagram in \mathbb{R}^{3} with a wall for each coordinate plane, visualized with a stereographic projection.

Consistent mod \mathfrak{m}^{2}

Example

Consider a scattering diagram in \mathbb{R}^{3} with a wall for each coordinate plane, visualized with a stereographic projection.

Consistent $\bmod \mathfrak{m}^{3}$

Example

Consider a scattering diagram in \mathbb{R}^{3} with a wall for each coordinate plane, visualized with a stereographic projection.

What about cluster algebras? Given B, let

$$
\begin{gathered}
\mathfrak{D}(\mathrm{B}):=\text { cons. comp. }\left\{\left(e_{i}, e_{i}^{\perp}\right) \mid 1 \leq i \leq r\right\} \text { for } \mathrm{B} \\
\mathcal{A}(\mathrm{~B}):=\text { cluster algebra of } \mathrm{B}
\end{gathered}
$$

Chamber: connected component in the complement of the walls. Reachable: connected to positive orthant by a path which crosses finitely-many walls.

Cluster combinatorics from $\mathfrak{D}(B)$ [GHKK]

There is a bijection
clusters of $\mathcal{A}(\mathrm{B}) \xrightarrow{\sim}$ reachable chambers of $\mathfrak{D}(\mathrm{B})$
which sends a cluster to its cone of g-vectors.
Equivalently, the g-fan is the union of the reachable chambers.

For each $m \in \mathbb{Z}^{r}$, there is a formal series Θ_{m} called a theta function whose coefficients count certain broken lines in $\mathfrak{D}(B)$.

$$
\begin{aligned}
\Theta_{(0,-1)} & =x^{(-1,0)}+x^{(-1,-1)}+x^{(0,-1)} \\
& =\frac{x_{2}+1+x_{1}}{x_{1} x_{2}}
\end{aligned}
$$

Cluster algebra from $\mathfrak{D}(\mathrm{B})$ [GHKK]

Every cluster monomial is the theta function of its g-vector, and (in many cases) the theta functions are a basis for $\mathcal{A}(\mathrm{B})$.

Convergence of general theta functions is still an open question.

Sage Goal 2

Use finite-order approximations of $\mathfrak{D}(B)$ to study cluster algebras.
I have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that $\mathfrak{D}(B)$ has more than two reachable components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the non-reachable theta functions coincide with the notched arc elements of Fomin, Shapiro, and Thurston?

Sage Goal 2

Use finite-order approximations of $\mathfrak{D}(B)$ to study cluster algebras.
I have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that $\mathfrak{D}(B)$ has more than two reachable components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the non-reachable theta functions coincide with the notched arc elements of Fomin, Shapiro, and Thurston?

Goal 2 status: 'tis a consummation devoutly to be wished.

