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Motivation

Scattering diagrams are piece-wise linear geometric objects which
can be used to visualize the exchange graph of a cluster algebra
and construct a canonical basis (in many cases).

Yet they may be defined without ever referring to cluster algebras!

At heart, they are a geometric visualization of commutation
relations inside a group Ê(B); equivalently, a commutative diagram
involving ring automorphisms called elementary transformations.



The initial ingredient is a skew-symmetric r × r integral matrix B.

F̂(B) := Z[x±11 , x±12 , ..., x±1r ][[y1, y2, ..., yr ]]

Some notation! Let m ∈ Zr .

xm := xm1
1 xm2

2 · · · x
mr
r , gcd(m) := gcd(m1,m2, ...,mr )

Def: Formal elementary transformations

For non-zero n ∈ Nr , the formal elementary transformation En,B is

the automorphism of F̂(B) given by

En,B(xm) = (1 + xBnyn)
n·m

gcd(n) xm, En,B(yn
′
) = yn

′

While n·m
gcd(n) must be an integer, it may be negative (that’s ok!).



Throughout, J :=

[
0 −1
1 0

]
is the simplest non-trivial B.

Examples!

Let B = J.

E(1,0)(x1) = (1 + x2y1)x1, E(1,0)(x2) = x2

E(1,0)(x
−1
1 ) = x1(1− x2y1 + x22y

2
1 − x32y

3
1 + · · · )

E(0,1)E(1,0)(x2) = (1 + (1 + x−11 y2)x2y1)x2

E(1,0)E(0,1)(x2) = (1 + x2y1)x2



Exercise

For any B, let n, n′ ∈ Nr be such that n · Bn′ = 1. Prove that

EnEn′ = En′En+n′En

as automorphisms of F̂ .

This fundamental relation implies others. Let B, n, n′ as above.

E 2
nEn′ = En(En′En+n′En)

= (En′En+n′En)En+n′En

= En′E
2
n+n′E2n+n′E

2
n

Exercise

Let B, n, n′ as above. Prove that

E 3
nEn′ = En′E

3
n+n′E3n+2n′E

3
2n+n′E3n+n′E

3
n

by repeatedly using the fundamental relation.



We also want to have infinite limits of automorphisms. Since F̂ is a
topological ring, Aut(F̂) has a topology of pointwise convergence.

Ê(B) := group generated by {En,B | n ∈ Nr} ⊂ Aut(F̂(B))

Elements of Ê(B) are infinite products of FETs and their inverses,
which have finitely many copies of any given element.

Exercise

Let B and n be arbitrary. Prove that

EnE2nE4nE8n · · ·E2kn · · ·
converges to the automorphism of F̂ which sends

xm 7→ (1− xBnyn)
− n·m

gcd(n) xm and yn
′ 7→ yn

′



It will often be useful to work with Ê(B) to finite order. Let

m := 〈y1, y2, ..., yr 〉 ⊂ F̂
Each En,B descends to an automorphism of F̂/md for all d . Then

Ê(B) = lim←−
(

group gen. by {En,B | n ∈ Nr} ⊂ Aut(F̂(B)/md)
)

That is, we only need finite products when working to finite order.

Exercise

Let B, n, n′ be arbitrary. Prove that

EnEn′ = En′En in Aut(F̂/md)

if yn+n′ ∈ md , and that

EnEn′ = En′E
λ
n+n′En in Aut(F̂/md), λ =

n·Bn′ gcd(n+n′)

gcd(n) gcd(n′)

if y2n+n′ , yn+2n′ ∈ md .



Goal

Use affine geometric objects to visualize relations in Ê(B).

Commutative diagrams will become consistent scattering diagrams!

F̂

F̂

F̂F̂

F̂
E(0,1)

E(1,1)

E(1,0)

E(1,0)

E(0,1)



Elementary walls

Given B, an (affine elementary) wall is a pair (n,W ) of

a non-zero n ∈ Nr , and

an affine polyhedral cone W ⊂ Rr which spans an affine
hyperplane normal to n.

If r = 2, W must be a line or a ray in R2.

Scattering diagrams

Given B, an (affine) scattering diagram is a multiset of walls
which, for each n, has only finitely many walls with that n.



Examples

Let B = J. Then an example scattering diagram is below.

n = (0, 1)

n = (1, 0)

n = (1, 1)

Note that n is determined by W and gcd(n).
Lazyness: Unlabeled walls have gcd(n) = 1.



Geometric/algebraic correspondence: idea

A wall is a ‘prism’ which acts by En as
we pass through it from side n points in,
and by E−1n the other way.

En

E−1n

n

Following this rule, we associate a path-ordered product to any
path p in D which avoids collisions of non-parallel walls.

Example

Path-ordered product:

E−1(0,1)E(1,0)E(1,1)E
−1
(1,1)E(1,1)E(0,1)



Consistency

A scattering diagram is consistent (resp. consistent mod md) if
every pair of paths with the same end points have the same
path-ordered product in Aut(F̂) (resp. Aut(F̂/md)).

Sufficient condition: the POP of every small loop is the identity.

Example

p1

p2

Path-ordered prod. of p1 = E(0,1)E(1,0)

Path-ordered prod. of p2 = E(1,0)E(1,1)E(0,1)

Consistent by fund. relation X

Exercise

Prove that a scattering diagram consisting of walls supported on
hyperplanes is consistent mod m2.



Consistent scattering diagrams encode multiple identities in Ê(B).

Example

Claim: The following scattering diagram with B = J is consistent.

E 2
(0,1)E(1,0)

= E(0,1)E(1,0)E(1,1)E(0,1)

= E(1,0)E(1,1)E(0,1)E(1,1)E(0,1)

= E(1,0)E
2
(1,1)E(1,2)E

2
(0,1)
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A wall (n,W ) is outgoing if {p + R≥0Bn} 6⊂W for all p ∈ Rr .

Consistent completion theorem [GSP, KS, GHKK]

Given a scattering diagram consistent mod md , there is an
essentially unique way to add outgoing walls to make it consistent.

The proof is constructive, and adds new walls order-by-order.

Given a scattering diagram consistent mod md , compute the
path-ordered product around tiny loops mod md+1.

Add outgoing walls to make these products trivial.
(It should not be obvious how to do this yet!)

Repeat, and take the limit as d →∞.

For consistency mod md ′ , stop after (d ′ − d)-many steps.



Sage Goal 1

Implement the consistent completion algorithm to finite-order.

Goal 1 Status: Crudely implemented for B = J.

Class: ScatteringDiagram(walls)

A finite-order scattering diagram for J, where walls is a list of

SDWall(n,point=p): a wall normal to n through p.

Some associated methods:

.improve() adds outgoing walls to increase order of
consistency by one.

.draw() plots the walls and collisions.

How do we actually find the outgoing walls for .improve()?
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Wherever two walls collide with n1, n2 such that n1 ·Bn2 = ±1, the
fundamental relation says: add a wall with normal n1 + n2.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

: an inconsistent collision

Consistent mod m2
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Wherever two walls collide with n1, n2 such that n1 ·Bn2 = ±1, the
fundamental relation says: add a wall with normal n1 + n2.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

: an inconsistent collision

In fact, consistent!



Example

Let B = J, as usual. Start with 4 hyperplane walls.

Problem!
(1, 2) · J(1, 0) = 2

Consistent mod m2

We have gone as far as the fund. relation will take us...or have we?
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For any t ∈ Q, we can define a tth root of En,B

E t
n,B : Q⊗ F̂(B)→ Q⊗ F̂(B)

using formal power series. Define

ÊQ(B) := group gen. by {Ed
n,B | n ∈ Nr , d ∈ Q}

Reduction to the simplest B

Let B be arbitrary, and n1, n2 ∈ Nr such that n1 · Bn2 6= 0. Let

J :=

[
0 1
−1 0

]
. Then there is a continuous inclusion

Ψ : ÊQ(J) ↪→ ÊQ(B), Ψ(Ed
(a1,a2),J

) = E
d gcd(a1n1+a2n2)
(n1·Bn2) gcd(a1,a2)
a1n1+a2n2,B



Example

Let B be arbitrary, and let n, n′ ∈ Nr such that n · Bn′ = 1. Then

Ψ(E(1,0),J) = En,B, Ψ(E(1,1),J) = En+n′,B, Ψ(E(0,1),J) = En′,B

Hence, the fundamental relation may be deduced from one case:

E(1,0)E(0,1) = E(0,1)E(1,1)E(1,0) ⇒ EnEn′ = En′En+n′En

Example

Let B be arbitrary, and let n, n′ ∈ Nr such that n · Bn′ = 1. Then

Ψ(E 2
(1,0),J) = En,B, Ψ(E 2

(0,1),J) = En′,B



What walls do we need to add to an arbitrary collision?

Key trick: all consistent collisions between pairs of walls reduces to
understanding certain consistent scattering diagrams for B = J.

D(b, c) := cons. comp. of {b · (e1, e⊥1 ), c · (e2, e⊥2 )} for B = J

These diagrams help us understand generic collisions as follows.

Local models for generic collisions (rough idea)

A collision between two walls (n1,W1) and (n2,W2) in a consistent
scattering diagram is locally equivalent to an affine transformation

of D
(

n1·Bn2
gcd(n1)

, n1·Bn2
gcd(n2)

)
, though the wall multiplicities can change.



Simple example

Consider the consistent scattering diagram below.

n1 = (0, 1)

n2 = (1, 1)

n1 · Bn2
gcd(n1)

=
n1 · Bn2
gcd(n2)

= 1

So, the collision should
look locally like D(1, 1).

D(1, 1)

So, D(1, 1) tells us what we already know about consistent
completions of pairs of walls with n1 · Bn2 = ±1.
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Great! So, how can we compute the other D(b, c)?

We can find D(b, c) by taking the input walls, perturbing them,
computing the cons. comp., and then linearizing the walls.

Examples

2 copies Perturb Comp. Linear.

D(1, 2)

3 copies
Perturb Comp. Linear.

D(1, 3)



Let’s return to the problem from before!

Example (resumed)

Local
model 2 copies

2 copies

Perturb

Dang it! Back where we started!

We need D(2, 2) to compute D(2, 2)
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Let’s return to the problem from before!

Example (resumed)

Local
model 2 copies

2 copies

Perturb

Dang it! Back where we started! Problem:

We need D(2, 2) to compute D(2, 2)



Let’s return to the problem from before!

Example (resumed)

Local
model 2 copies

2 copies

Perturb

Dang it! Back where we started! Solution:

We need D(2, 2) mod md to compute D(2, 2) mod m2d



A giant recursive computation

D(b, c) may be computed to any finite order, using only finitely
many scattering diagrams of the form D(b′, c ′) to lower order.

Hence, approximating any D(b, c) to any finite order is suitable to
computer implementation!

Since these are the building blocks of all consistent scattering
diagrams, this is a great place to start.

Sage Goal 1.A

Implement a table of finite-order approximations of scattering
diagrams of the form D(b, c), which dynamically increases each
diagram’s order as needed by internal and external computations.



Goal 1.A status: Crudely implemented.

Class: SDTable()

Initializes a dictionary of model scattering diagrams.

.diagrams: A dictionary with key:value pairs

(b,c) : the current finite-order approx. of D(b, c)

.multiplicity((b,c),n): Returns the multiplicity of the
wall with normal n in D(b, c).

.mtable((b,c),d): Prints a table of multiplicities in D(b, c)
with order ≤ d .

Both methods create and improve diagrams as needed to achieve
the required order of consistency.



Sage Goal 1.B

Implement linear scattering diagrams with r = 3 with
corresponding .improve().

Reasons linear scattering diagrams with r = 3 shouldn’t be so bad:

Collisions between walls are a line or ray.

Maybe visualized using stereographic projection.

Are completely determined by a certain 2-dimensional ‘slice’.

Intuitively, linear r = 3 is still ‘essentially 2 dimensional’.

Goal 1.B Status: Not implemented (some stereo. proj. code).
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Example

Consider a scattering diagram in R3 with a wall for each
coordinate plane, visualized with a stereographic projection.

B =

 0 −1 1
1 0 −1
−1 1 0



Consistent mod m2
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What about cluster algebras? Given B, let

D(B) := cons. comp. {(ei , e⊥i ) | 1 ≤ i ≤ r} for B

A(B) := cluster algebra of B

Chamber: connected component in the complement of the walls.
Reachable: connected to positive orthant by a path which crosses
finitely-many walls.

Cluster combinatorics from D(B) [GHKK]

There is a bijection

clusters of A(B)
∼−→ reachable chambers of D(B)

which sends a cluster to its cone of g-vectors.

Equivalently, the g-fan is the union of the reachable chambers.



For each m ∈ Zr , there is a formal series Θm called a theta
function whose coefficients count certain broken lines in D(B).

Θ(0,−1) = x (−1,0) + x (−1,−1) + x (0,−1)

=
x2 + 1 + x1

x1x2

Cluster algebra from D(B) [GHKK]

Every cluster monomial is the theta function of its g-vector, and
(in many cases) the theta functions are a basis for A(B).

Convergence of general theta functions is still an open question.



Sage Goal 2

Use finite-order approximations of D(B) to study cluster algebras.

I have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that D(B) has more than two reachable
components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the
non-reachable theta functions coincide with the notched arc
elements of Fomin, Shapiro, and Thurston?

Goal 2 status: ’tis a consummation devoutly to be wished.
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