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Column matroids

We study k × n complex matrices, guided by the perspective:

a k × n matrix over C ∼ an ordered list of n-many vectors in Ck

Natural question

Which subsets of the vectors form a basis?

The column matroid of a k × n matrix is the set of k-element
subsets of {1, 2, ..., n} which index linearly independent columns.

Example

The column matroid of

[
1 2 0
0 0 1

]
= {{1, 3}, {2, 3}}
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Positroids

A totally non-negative matrix is a real-valued matrix whose
minors are all non-negative.

Definition: Positroid

A positroid is the column matroid of a totally non-negative matrix.

Unimportant example: a non-positroid

The column matroid of

[
1 0 1 0
0 1 0 1

]
=
{{1, 2}, {2, 3},
{3, 4}, {1, 4}}

is not the column matroid of any totally non-negative 2× 4 matrix.

Proposition [Postnikov]

The column matroid of a matrix A is contained in a unique
minimal positroid, which we call the positroid of A.
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Positroid cells in the Grassmannian

We pass to the (k , n)-Grassmannian with the isomorphism

GL(k)\{k × n matrices of rank k} ∼−→ Gr(k, n)

A 7→ [A] := span(rows of A) ∈ Gr(k , n)

This lets us stratify Gr(k , n) into strata indexed by positroids.

Definition: Positroid cell

The positroid cell of a positroid M is

Π◦(M) := {[A] ∈ Gr(k , n) | (the positroid of A) =M}

Basic example: The big positroid cell

Let M = {all k-element subsets of {1, 2, ..., n}}.
Π◦(M) = {[A] ∈ Gr(k , n) | ∀1 ≤ i ≤ n, ∆i ,i+1,...,i+k (A) 6= 0}
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2-colored graphs in the disc

Let G be a graph in the disc with...

a bipartite 2-coloring of its internal vertices, and

a clockwise indexing of its boundary vertices from 1 to n.

1
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4

56

Assumptions (for simplicity)

1 Boundary vertices are next to
one white vertex, and no
black or boundary vertices.

2 Internal vertices have degree
at least 2.

3 Components are connected
to the boundary.
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Matchings of G

For this talk, a matching of G is a
subset of the edges for which every
internal vertex is in exactly one edge.

Easy observation

Every matching of G contains

k := |white vertices|−|black vertices|
boundary vertices.

1
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4

56

Thus, each matching determines a k-element subset of {1, 2, ..., n}.

Natural question

Given G , which k-element subsets of {1, 2, ..., n} index the
boundary of one or more matchings of G?
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The positroid of G

Remarkably, the answer is a new characterization of positroids!

Theorem [essentially Postnikov]

The set of subsets of {1, 2, ..., n} which index the boundaries of
matchings of G is a positroid. Every positroid occurs this way.

A graph G is reduced if it has the minimal number of faces among
all graphs with the same positroid as G .

...“essentially”? [Talaska, Postnikov-Speyer-Williams]

We work with matchings in bipartite graphs rather than the
equivalent theory of flows in perfectly oriented networks.
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Two maps, both alike in dignity

In an unpublished preprint in 2003, Postnikov associates two maps
to a reduced graph with positroid M.

A boundary measurement map

B : an algebraic torus −→ Π◦(M)

A cluster: a rational map

F : Π◦(M) 99K an algebraic torus

Significance

These maps have since proven fruitful in studying the
combinatorics of positroids, the geometry of positroid cells, and
applications to integrable systems and perturbative field theories.

Despite abundant applications, basic questions about these maps
remained open for more than a decade; like, how are they related?



Preliminaries Two maps from a reduced graph The twist Applications and connections

Partition functions

Given a k-element subset I of {1, 2, ..., n}, we can encode all the
matchings with boundary I into a partition function ZI .

Example: Partition functions

a b
c

d
e

f g

h i
j

1

2

3

4

The
(4
2

)
partition functions are:

Z12 = bdgi Z13 = bdfj
Z14 = adfh Z23 = begj

Z24 = acgi + aegh Z34 = acfj

Easy: a partition function ZI = 0 iff I is not in the positroid of G .

Natural question

What other relations hold among the partition functions?
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Relations between partition functions

Remarkably, the partition functions satisfy the Plücker relations!

As a consequence, there is a matrix-valued function...

a b
c

d
e

f g

h i
j

[
bd bge

f 0 −ac
0 gi fj afh

b

]

...whose I th maximal minor equals the partition function ZI .

Z12 = bdgi Z13 = bdfj
Z14 = adfh Z23 = begj

Z24 = acgi + aegh Z34 = acfj

∆12 = bdgi ∆13 = bdfj
∆14 = adfh ∆23 = begj

∆24 = acgi + aegh ∆34 = acfj



Preliminaries Two maps from a reduced graph The twist Applications and connections

Gauge transformations

If we treat the variables as arbitrary non-zero complex numbers and
compose with the projection to Gr(k, n), we get a well-defined map

(C∗)Edges(G) −→ Gr(k , n)

a b
c

d
e

f g

h i
j

span
{

(bd , bge
f
,0,−ac),(0,gi ,fj , afh

b )
}

Gauge transformations: The image does not change when scaling
the numbers at each edge adjacent to a fixed vertex by λ ∈ C∗.

a b
λc

λd
λe

f g

h i
j

span
{

(λbd ,λ bge
f
,0,−λac),(0,gi ,fj , afh

b )
}
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The boundary measurement map

Let (C∗)Edges(G)/Gauge be the quotient by gauge transformations.
This is an algebraic torus: isomorphic to (C∗)n for some n.

Theorem [Postnikov, M-Speyer]

For reduced graphs G , the map (C∗)Edges(G) → Gr(k , n) descends
to a well-defined map of varieties

B : (C∗)Edges(G)/Gauge −→ Π◦(M)

where M is the positroid of G .

The map B is called the boundary measurement map.

Conjecture

The map B is an open inclusion.
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Strands in a reduced graph

A strand in reduced G is a path which...

begins and ends at boundary vertices

passes through the midpoints of edges

alternates turning right around white
vertices and left around black vertices

1
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4
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3

3

3

Face labels from a strand

Index a strand by its source vertex, and
label each face to the left of the strand
by that label.
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Face labels and the cluster structure

Repeating this for each strand, each face of
G gets labeled by a subset of {1, 2, ...n}.

Plücker coordinates of faces

Each face label has k elements, and hence
defines a Plücker coordinate on Π◦(M).

1
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4

56
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123

234

345

456

256

245

124

Conjecture [essentially Postnikov]

The homogeneous coordinate ring of Π◦(M) is a cluster algebra,
and the Plücker coordinates of the faces of G form a cluster.

The conjecture implies the Plückers of the faces give a rational map

F : Π◦(M) 99K (C∗)Faces(G)/Scaling

which is an isomorphism on its domain (the cluster torus).
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Two conjectural tori associated to a reduced graph

So, a reduced graph G with positroidM determines two maps, and
each map conjecturally defines an open algebraic torus in Π◦(M).

The image of the boundary measurement map

B : (C∗)Edges(G)/Gauge −→ Π◦(M)

The domain of definition of the cluster of Plücker coordinates

F : Π◦(M) 99K (C∗)Faces(G)/Scaling

Natural question

What is the relation between these two subvarieties?

In a simple world, they’d coincide and we’d have an isomorphism

F ◦ B : (C∗)Edges(G)/Gauge
∼−→ (C∗)Faces(G)/Scaling
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The need for a twist

In the real world, we need a twist automorphism τ of Π◦(M),
which will fit into a composite isomorphism

(C∗)Edges(G)/Gauge (C∗)Faces(G)/Scaling

Π◦(M) Π◦(M)

B F

τ

and thus take the image of B to the domain of F.
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The twist of a matrix

Let A be a k × n matrix of rank k , and assume no zero columns.
Denote the ith column of A by Ai , with cyclic indices: Ai+n = Ai .

Definition: The twist

The twist τ(A) of A is the k × n-matrix defined on columns by

τ(A)i · Ai = 1

τ(A)i · Aj = 0, if Aj is not in the span of {Ai ,Ai+1, ...,Aj−1}

Hence, τ(A)i is defined by its dot product with the ‘first’ basis of
columns of A encountered starting at column i and moving right.
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Example of a twist

Example: Twisting a matrix

Consider the 3× 4 matrix

A =

1 1 0 0
0 1 1 2
0 0 0 1


The first column τ(A)1 of the twist is a 3-vector v , such that...

v ·
[
1
0
0

]
= 1, v ·

[
1
1
0

]
= 0, v ·

[
0
1
0

]
is already fixed, and v ·

[
0
2
1

]
= 0

We see that v =
[

1
−1
2

]
. In this way, we compute the twist matrix

τ(A) =

 1 1 0 0
−1 0 1 0
2 0 −2 1
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The twist on a positroid cell

Twisting matrices descends to a well-defined map of sets

Gr(k , n)
τ−→ Gr(k , n)

However, this map is not continuous; the defining equations jump
when Aj deforms to a column in the span of {Ai ,Ai+1, ...,Aj−1}.

Theorem [M-Speyer]

The domains of continuity of τ are precisely the positroid cells.
The twist τ restricts to a regular automorphism of Π◦(M).

The inverse of τ is given by a virtually identical formula to τ , by
reversing the order of the columns.
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The induced map on tori

Let’s consider our conjectural isomorphism of tori.

F ◦ τ ◦ B : (C∗)Edges(G)/Gauge −→ (C∗)Faces(G)/Scaling

Example: the open cell of Gr(2, 4)

a b
c

d
e

f g

h i
j

1

2

3

4

1

2

3

4

1
acfj

1
adfh

1
bdgi

1
begj

1
aegh

[
bd beg

f 0 −ac
0 gi fj afh

b

] [
1

bd
f

beg
h

bcj 0

− e
dfi 0 1

fj
b

afh

]B
τ

F

?
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Minimal matchings

It looks like the entries are reciprocals of matchings!

Lemma [M-Speyer]

Given a face F in G , there is a matching MF such that

the F -coordinate of F ◦ τ ◦ B =
1

product of edges in MF

What is the matching MF ?

The matching MF is the minimal matching whose boundary is the
face label of F . There is an explicit construction using strands.
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The isomorphism of model tori

We can collect these coordinates into a map

(C∗)Edges(G) −→ (C∗)Faces(G)

Lemma [M-Speyer]

The above map induces an isomorphism of algebraic tori

D : (C∗)Edges(G)/Gauge −→ (C∗)Faces(G)/Scaling

What is D−1?

The inverse D−1 may be induced from the map

(C∗)Faces(G) −→ (C∗)Edges(G)

such that, at each edge e

coordinate at e :=
∏

adjacent faces f

(coordinate at f )−1
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Putting it all together

Theorem [M-Speyer]

For each reduced graph G , there is a commutative diagram

(C∗)Edges(G)/Gauge (C∗)Faces(G)/Scaling

Π◦(M) Π◦(M)

D

D−1

B F
τ

τ−1

The image of B and the domain of F are open algebraic tori in
Π◦(M), and τ takes one to the other.

The (rational) inverse of B is D−1 ◦ F ◦ τ .

The (regular) inverse of F is τ ◦ B ◦ D−1.
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

? ?

? ? ? ?

? ? ? ? ? ?

?

? ?

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f


B
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0

τ
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

1

1
c

1
a

1
be−cd

b
acd

1
ad

(adf )−1

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0



F

τ
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

1 a

c ac2d
b

a2cd
b

ad

be − cd
adf (be − cd)

a2cd2 f
b

a2cd2 f
b

a2d2f

adf

ac

acd(be−cd)
b

a2cd2

b

1

2

3 4

5

6

1

1
c

1
a

1
be−cd

b
acd

1
ad

(adf )−1

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0



D−1

F

τ
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Application: Inverting the boundary measurement map

Let’s invert B in a classic example!

Example: The unipotent cell in GL(3), as a positroid cell

1

2

3 4

5

6

1 a

1 1 1 d

1 1 1 1 1 f

e
d

be−cd
ae

cd
ae

1

2

3 4

5

6

1

1
c

1
a

1
be−cd

b
acd

1
ad

(adf )−1

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

 0 0 1 1
a

e
bd−ce

1
c

0 −1 −b
d

−b
ad

−c
be−cd

0

1 e
f

be−cd
df

be−cd
adf

0 0



D−1

B F

τ
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Relation to the Chamber Ansatz

So, we have the following boundary measurement map.

1

2

3 4

5

6

1 a

1 1 1 d

1 1 1 1 1 f

e
d

be−cd
ae

cd
ae

0 0 1 a b c
0 −1 0 0 d e
1 0 0 0 0 f

B

This is equivalent to a factorization into elementary matrices.[
a b c
0 d e
0 0 f

]
=

[
a 0 0
0 d 0
0 0 f

][
1 cd

ae
0

0 1 0
0 0 1

][
1 0 0
0 1 e

d

0 0 1

][
1 be−cd

ae
0

0 1 0
0 0 1

]
Our computation to find this factorization is identical to the
Chamber Ansatz introduced by Berenstein-Fomin-Zelevinsky.
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Connection: Monodromy coordinates

The twist also illuminates the connection between cluster
coordinates and monodromy coordinates.

Definition: Monodromy around a face

Given a point in (C∗)Edges(G), the monodromy around a face in G
is the alternating product of the edge weights around that face.

Gauge transformations preserve the monodromy, and so the
monodromy coordinates may be combined into a map

µG : (C∗)Edges(G)/Gauge −→ (C∗)Faces(G)

a b
c

d
e

f g

h i
j

ac
bd

df
eg

gi
fj

bj
ah

eh
ci

µG
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The monodromy map twists to a Foch-Goncharov map

Proposition

For a face F in G , the F -coordinate of µG ◦ D−1 is the alternating
product of adjacent faces (times a unit if F is on the boundary).

So, µG ◦ D−1 may be described cluster theoretically as the map

ρG : A-torus→ X -torus

defined by a square extension of the extended exchange matrix.

a b
c

d
e

f g

h i
j

1
acfj

1
adfh

1
bdgi

1
begj

1
aegh

ac
bd

df
eg

gi
fj

bj
ah

eh
ci

D ρG
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A better commutative diagram

First, we need the affine cone version of the original diagram.

(C∗)Edges(G)/Gauge (C∗)Faces(G)

Π̃◦(M) Π̃◦(M)

D

D−1

B F

τ

τ−1

(C∗)Faces(G)

µG ρG

µG ρG

(C∗)Faces(G)

X (M)

µG ρG

µ ρ
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A better commutative diagram

The monodromy µG and Foch-Goncharov map ρG fit inside.

(C∗)Edges(G)/Gauge (C∗)Faces(G)

Π̃◦(M) Π̃◦(M)

D

D−1

B F

τ

τ−1

(C∗)Faces(G)

µG ρG

µG ρG

(C∗)Faces(G)

X (M)

µG ρG

µ ρ
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A better commutative diagram

Assuming the cluster structure, this extends to the X -variety.

(C∗)Edges(G)/Gauge (C∗)Faces(G)

Π̃◦(M) Π̃◦(M)

D

D−1

B F

τ

τ−1

(C∗)Faces(G)

µG ρG

µG ρG

(C∗)Faces(G)

X (M)

µG ρG

µ ρ
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Application: Counting matchings

Corollary

Let G be a reduced graph with positroid M. If A is a matrix with

the matroid of A is contained in M, and

for each face label I of G , the minor ∆I (A) = 1,

then ∆J(τ−1(A)) counts matchings with boundary J.

Example: Domino tilings of the Aztec diamond of order 3

1

2

3

4

5

6 7

8

9

10

11

12

Domino tilings of this
shape...

...are the same as
matchings of this
graph, with boundary
{4, 5, 6, 10, 11, 12}.
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Application: Counting matchings

Example: (continued)

Here is an appropriate A and its inverse twist.

A =

 1 6 18 1 1 1 0 0 1 0 0 0
0 1 6 1 3 5 0 −1 0 0 0 0
0 0 1 1 5 13 1 0 0 0 0 0
0 0 0 1 6 18 2 2 2 0 0 1
0 0 0 0 1 6 2 6 10 0 −1 0
0 0 0 0 0 1 2 10 26 1 0 0


τ−1(A) =

 1 0 0 0 0 0 0 0 −1 −2 −2 −2
0 1 0 0 0 0 0 1 6 10 6 2
0 0 1 0 0 0 −1 −6 −18 −26 −10 −2
0 0 0 1 0 0 1 5 13 18 6 1
0 0 0 0 1 0 −1 −3 −5 −6 −1 0
0 0 0 0 0 1 1 1 1 1 0 0


We compute that ∆{4,5,6,10,11,12}(τ

−1(A)) = 64. X

Finding A by brute force is probably not efficient, but verifying that
a matrix has the necessary properties can be faster than counting.
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Further directions

Hypotheses to weaken:

Reduced graphs in the disc → ‘reduced graphs’ in surfaces.
Positroid cells in Gr(k , n) → projected Richardson cells in
partial flag varieties.

Leclerc recently produced a cluster structure on the
coordinate ring of Π̃◦(M) with categorical tools. How does
this relate to given conjectural cluster structure?

We may write any twisted Plücker coordinate as a sum over
matchings of monomials in face Plückers. What is the relation
to similar formulae (snake graphs, Aztec everything, etc)?

Conjecture: The twist is the decategorification of the shift
functor in an additive or Frobenius categorification.
A cluster algebra with a Jacobi-finite potential has such a
shift automorphism. Can this story can be extended?
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