	А
	bou
Name:	1

- 10
- 1. The length of a rectangle is increasing at 3 feet per second, and the width is decreasing in such a way that the area stays constant at 10 square feet. How fast is the width decreasing when the length is 5 feet?

$$\frac{d}{dt}(lw) = \frac{cl}{ct}(10)^{1}$$

$$\frac{dw}{dt} = \frac{-6}{5} \text{ Gt./sec.}$$

- (0)
- 2. Find the maximum and minimum values of $f(x) = 3x 4x^3$ on the interval [0, 2]. Show all work.

Minimum value is f(x) is _____ at $x = _____ 2$

$$f'(x) = 3 - 12x^2 = 0$$
 when

$$\chi^2 = \frac{3}{12}$$
 or $\chi = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}$

 $f'(x) = 3 - 12x^2 = 0 \quad \text{when} \quad x^2 = \frac{3}{12} \quad \text{or } x = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}.$ The critical points of f(x) are at $x = -\frac{1}{2}$ and $x = \frac{1}{2}$, but The only one of These in [0,2) is x= 1 So we check

6 at The endpoints x=0 and x=2, and The critical point

$$\chi = \frac{1}{2}$$
: $\beta(0) = 0$
 $\beta(\frac{1}{2}) = 3 \cdot \frac{1}{2} - 4 \cdot \frac{1}{8} = 1$
 $\beta(2) = 3 \cdot 2 - 4 \cdot 8 = -26$

$$6(0) = 0$$

$$6(\frac{1}{2}) = 3\frac{1}{2} - 4\frac{1}{8} = 1$$

$$6(\frac{1}{2}) = 3\cdot\frac{1}{2} - 4\cdot8 = -26$$

$$50 \text{ The max is } 1 \text{ of } x = \frac{1}{2}$$

$$and \text{ The min is } -26$$

$$at x = 2$$