Quiz 4

Name:

1. Suppose z is given as a function of x and y by the equation $sin(xyz) + x^2z^3 - xy^4 = 3z$. Find:

a) $\frac{\partial z}{\partial x}$

Answer: Since z is given implicitly by F(x, y, z) = 0, where $F(x, y, z) = \sin(xyz) + x^2z^3 - xy^4 - 3z$, we can use the formula $\frac{\partial z}{\partial x} = \frac{-F_x}{F_z}$. This gives

$$\frac{\partial z}{\partial x} = \frac{-F_x}{F_z} = -\left(\frac{\cos(xyz)yz + 2xz^3 - y^4}{\cos(xyz)xy + 3x^2z^2 - 3}\right).$$

$$b) \ \frac{\partial z}{\partial u}$$

Answer: Similarly to part a), we can use

$$\frac{\partial z}{\partial y} = \frac{-F_y}{F_z} = -\left(\frac{\cos(xyz)xz - 4xy^3}{\cos(xyz)xy + 3x^2z^2 - 3}\right)$$

2. Find the derivative of the function $f(x, y) = \frac{3}{x} + \log y$ at the point (2, 5) in the direction of the vector $\mathbf{v} = \langle 1, 7 \rangle$.

Answer: The unit vector in the direction of \mathbf{v} is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle 1,7 \rangle}{\sqrt{50}}$, and the gradient of f at the point (2,5) is $\nabla f = \langle f_x, f_y \rangle = \left\langle \frac{-3}{x^2}, \frac{1}{y} \right\rangle = \left\langle \frac{-3}{4}, \frac{1}{5} \right\rangle$. So

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = \left\langle \frac{-3}{4}, \frac{1}{5} \right\rangle \cdot \frac{\langle 1, 7 \rangle}{\sqrt{50}} = \frac{-3}{4\sqrt{50}} + \frac{7}{5\sqrt{50}}.$$

3. Find the equation of the tangent plane to the surface $z^3 + zx + z^2y^3 = 3$ at the point (3, 2, 1).

Answer: the surface is a level curve of the function $F(x, y, z) = z^3 + zx + z^2y^3$, so the tangent plane at (3, 2, 1) is perpendicular to the gradient of F at (3, 2, 1). This gradient vector is

$$\nabla F = \langle F_x, F_y, F_z \rangle = \langle z, 3z^2y^2, 3z^2 + x + 2zy^3 \rangle = \langle 1, 12, 22 \rangle.$$

So an equation of the tangent plane is (x-3) + 12(y-2) + 22(z-1) = 0.