Math 4073 - Numerical Analysis Assignment 1

1. Suppose you want to find the positive solution of the equation $x=3 \sin x$ (note: we don't want the negative solution or the solution $x=0$). Choose an appropriate starting interval $[a, b]$, and use the error estimate for the bisection method to estimate how many iterations this method would take to approximate the solution to within an error of 10^{-6} using your choice of a and b. Use the MATLAB program bisection.m to carry out this many steps and obtain the approximate solution. Include a printout of the successive approximations computed.
2. Suppose you want to find the solution of the equation $x^{4}-2 x^{2}-3$ in the interval $[1,2]$.
a) Rewrite the equation in the form $x=g(x)$ where $g(x)$ is a function satisfying the inequality $\left|g^{\prime}(x)\right| \leq k$ for all $x \in[1,2]$ and k is some number less than 1 . Justify your answer by giving the value of k and explaining how you know that the inequality is satisfied.
b) Use the error estimate for the fixed-point iteration method to estimate how many iterations this method would take to approximate the solution to within an error of 10^{-6} using $p_{0}=1$. Use the MATLAB progam fixed_point.m to carry out this many steps and obtain the approximate solution. Include a printout of the successive approximations computed.
3. This problem considers a method for approximating $\sqrt{2}$.
a) Use the theorem on convergence of the fixed-point iteration method to show that the sequence defined by

$$
p_{n}=\frac{1}{2} p_{n-1}+\frac{1}{p_{n-1}}
$$

converges to $\sqrt{2}$ as long as p_{0} is chosen to be greater than $\sqrt{2}$. (You can do this by taking the interval $[a, b]$ in the theorem to be $\left[\sqrt{2}, p_{0}\right]$.)
b) Show that if p_{0} is any number such that $0<p_{0}<\sqrt{2}$, then the number p_{1} given by the above formula will satisfy $p_{1}>\sqrt{2}$. (Hint: perhaps the easiest way to do this is to show that the inequality $p_{1}>\sqrt{2}$ can be rewritten in the form $\left(p_{0}-\sqrt{2}\right)^{2}>0$, which is obviously true because the square of any non-zero number is positive.) From this conclude that the fixed-point method converges to $\sqrt{2}$ if p_{0} is any positive number whatsoever.
4. Show that Newton's method for finding a root p of the equation $f(x)=0$ can be rewritten as a fixed-point iteration method for finding a fixed point p of the equation $x=g(x)$, where $g^{\prime}(p)=0$. Identify the function $g(x)$ and prove that if $f(p)=0$ then $g^{\prime}(p)=0$.
5. Use Newton's method, with appropriate choices of the initial guess p_{0}, to find the two positive solutions of the equation $4 x^{2}-e^{x}-e^{-x}=0$ to within 10^{-5}. Use newton.m or newton_raphson.m, and include a printout of the successive approximations computed.

