Math 4073 - Numerical Analysis Assignment 3

1. A cubic spline S for a function f is given by

$$
S(x)= \begin{cases}1+x+2 x^{2} & \text { for } 0 \leq x \leq 1 \\ a+b(x-1)+c(x-1)^{2}+d(x-1)^{3} & \text { for } 1 \leq x \leq 2\end{cases}
$$

We require the cubic spline to be a clamped cubic spline, which means that the derivatives of S should equal the derivatives of f at the points $x=0$ and $x=2$. We are given that $f^{\prime}(0)=1$ and $f^{\prime}(2)=0$.

Find the values of the constants a, b, c, and d.
2. Find values of the constants A, B, and C so that the numerical differentiation formula for $f^{\prime}\left(x_{0}\right)$,

$$
f^{\prime}\left(x_{0}\right)=\left(\frac{A f\left(x_{0}\right)+B f\left(x_{0}+h\right)+C f\left(x_{0}+2 h\right)}{h}\right)+O\left(h^{2}\right),
$$

is valid for all sufficiently differentiable functions f.
(Hint: expand $f\left(x_{0}+h\right)$ and $f\left(x_{0}+2 h\right)$ in Taylor series about x_{0} up to order h^{3}, and substitute into the left-hand side of the equation

$$
A f\left(x_{0}\right)+B f\left(x_{0}+h\right)+C f\left(x_{0}+2 h\right)-h f^{\prime}\left(x_{0}\right)-O\left(h^{3}\right)=0
$$

In the resulting expression, collect the terms according to powers of h and set each of the coefficients of h^{0}, h^{1}, and h^{2} equal to zero. This will give you three equations which you can solve for A, B, and C.)
3. The approximation $(1+h)^{1 / h} \approx e$ has error term given by

$$
(1+h)^{1 / h}=e+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\ldots
$$

as $h \rightarrow 0$, where K_{1}, K_{2}, \ldots are independent of h. Use Richardson extrapolation to find an approximation to e with error $O\left(h^{2}\right)$; and apply Richardson extrapolation again to find an approximation to e with error $O\left(h^{3}\right)$.
4. Determine the values of N and $h=(2-1) / N$ required to approximate $\int_{1}^{2} x \ln x d x$ to within 10^{-5}, and compute the approximation. Use:
(a) the composite Trapezoid Rule.
(b) the composite Simpson's Rule.
5.
(a) Use the method of undetermined coefficients to find constants A, B, C, and D so that the Newton-Cotes approximation formula

$$
\int_{0}^{1} f(x) d x \approx A f(0)+B f(1 / 3)+C f(2 / 3)+D f(1)
$$

is exact for all polynomials of degree three or less.
(b) Use your answer from part (a) to write down the Newton-Cotes approximation formula for the integral of $f(x)$ on the interval $\left[x_{0}, x_{0}+3 h\right]$, using the points $\left\{x_{0}, x_{0}+h, x_{0}+2 h, x_{0}+3 h\right\}$. What power of h do you expect to appear in the error term, and why?

