1. (15 points) Let
$$z = \frac{8-7i}{(3i)(4+2i)}$$
. Find

a. Re
$$z = \frac{-44}{60} \left(= \frac{-11}{15} \right)$$

b. Im
$$z = \frac{10}{60}$$
 $\left(=\frac{3}{30}\right) = \left(\frac{3}{10}\right)$

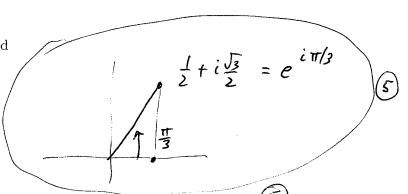
$$\frac{4}{2} = \frac{(8-7i)(4-2i)}{3i(4^2+2^2)} = \frac{(8\cdot4-2\cdot7)-i(4\cdot7+2\cdot8)}{60i}$$

$$= \frac{48 - 44i}{60i}$$

$$= \frac{-44}{60} - \frac{48}{60}i$$
(3)

2. (15 points) Let
$$z = \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{47}$$
. Find

c. Im
$$z = \frac{\sqrt{3}}{2}$$



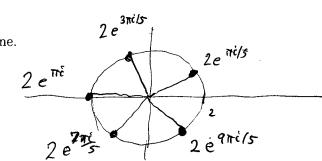
$$2 = (e^{i\pi/3})^{47} = e^{i\frac{47\pi}{3}} = e^{i\pi/3}$$

$$= e^{i6\pi i} e^{-\pi i/3} = e^{-\pi i/3}$$

$$= e^{-\pi i/3}$$

$$= e^{-\pi i/3}$$

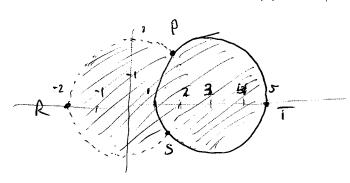
- 3. (20 points) The number z = -32 has one real 5th root: namely, -2. However, it has a total of five complex 5th roots. $2 = 32e^{\pi i} = 32e^{3\pi i} = 32e^{5\pi i} = 32e^{9\pi i} = 32e^{9\pi i}$
 - a. Find all five values of $(-32)^{1/5}$ (in exponential form) $\frac{12}{2}e^{\pi i/5}$, $2e^{3\pi i/5}$, $2e^{\pi i}$, $2e^{3\pi i/5}$
 - b. Of the five values of in part a, which is the principal root? $2e^{\pi is}$
 - c. Graph the five 5th roots in the complex plane.



027

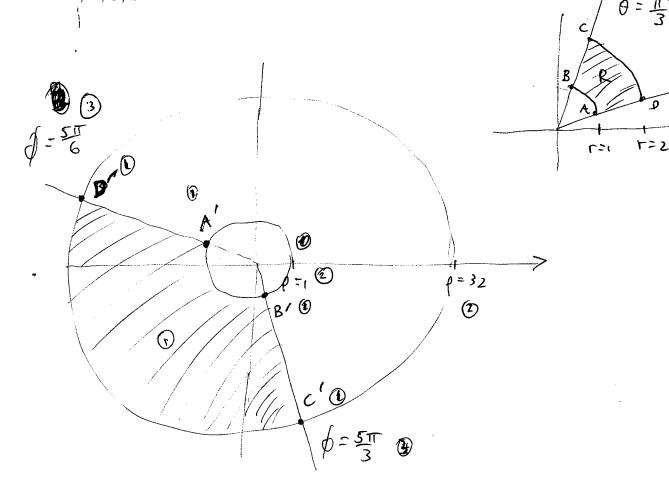
- 4. (10 points) Let S be the set consisting of all points z such that |z| < 2 or $|z 3| \le 2$.
 - **a.** Sketch the set *S*:

(2)

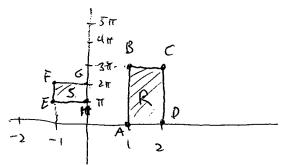


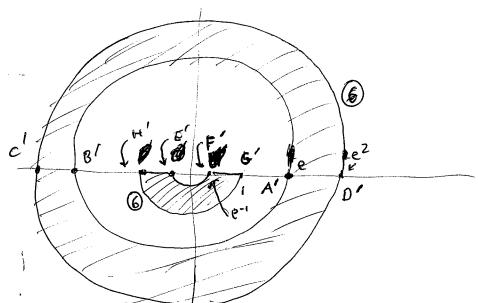
Answer the following questions, giving brief reasons for your answers:

- 2) She are PRS of the circle (2 = 2) us the are PTS of the circle 12-31=23
- Q c. Is S open? not, because it rontains some of its Soundary points (c.g. Z = 5)
- a. Is S connected? yes, any two points in S can be connected by a polygonal path in S
- (2) e. Is S a domain? No, because it is not open.
 - 5. (15 points) Let $w=z^5$, and let R be the region in the z-plane shown in the diagram below. Sketch the image of R in the w-plane. Label the ρ and ϕ values of the boundaries, and label the images of the points A, B, C, D.



- 6. (15 points) Let $w = e^z$, and let R and S be the regions in the z-plane shown in the diagram below.
- a. Sketch the images of R and S in the w-plane, labeling the images of the points A, B, C, D, E, F, G, H.





b. Can you find two different numbers z_1 and z_2 in R which are mapped to the same point? If so, exhibit them.

Or hand $z_1 = 1$ and $z_2 = 1 + 2\pi i$: $e^{z_1} = e^{z_2} = e^{z_2}$

c. Can you find two different numbers z_1 and z_2 in S which are mapped to the same point? If so, exhibit them.

7. (10 points) Find all complex numbers z such that $\bar{z} = z^2$. (Hint: first take the modulus of both sides.)

$$\frac{7}{7} = 2^2 \implies \left| \frac{7}{7} \left(= \left| 2^2 \right| \right) \right| \Rightarrow \left| \frac{1}{2} \left| = \left| 2^2 \right| \right| \Rightarrow \left| \frac{1}{2} \left| = 0 \right| \right|$$

$$-\frac{1}{12} | \frac{1}{2} | = 0, \text{ Then } 2 = 0$$

$$-\frac{1}{12} | \frac{1}{12} | = 1, \text{ Then } 2 = 0 | 0, \text{ so } 2 = 0 | 0 = \frac{1}{2}, \text{ Answer:}$$

$$-\frac{1}{12} | \frac{1}{12} | = 1, \text{ Then } 2 = 0 | 0, \text{ so } 2 = 0 | 0 = \frac{1}{2}, \text{ and } 3 = 2^{2} | 0, 1, 0 | 0 = \frac{2\pi i}{3}, 0$$