Assignment 8

Consider the following boundary-value problem for the heat equation on the interval $[0, \pi]$ with time-dependent boundary conditions:

$$u_t - u_{xx} = 0$$
 for $0 < x < \pi$ and $t > 0$,
 $u(0,t) = 0$ for $t \ge 0$,
 $u(\pi,t) = \pi \cos t$ for $t \ge 0$,
 $u(x,0) = x$ for $0 \le x \le \pi$.

- (a) Find a simple function r(x,t) satisfying the boundary conditions r(0,t)=0 and $r(\pi,t)=\pi\cos t$ for $t\geq 0$.
- (b) Let v(x,t) = u(x,t) r(x,t). What differential equation, boundary conditions, and initial condition does v satisfy?
- (c) Substitute $v(x,t) = \sum_{n=1}^{\infty} A_n(t) \sin(nx)$ into the differential equation for v, and obtain an ordinary differential equation for $A_n(t)$. You may use that $x = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin nx$ for $0 < x < \pi$.
- (d) Use the initial condition for v to determine $A_n(0)$.
- (e) Use your answers to (c) and (d) to find $A_n(t)$. You may use that the general solution to the equation $\phi'(t) + n^2 \phi(t) = b \sin t$ is

$$\phi(t) = \frac{b}{1 + n^4} (n^2 \sin t - \cos t) + Ce^{-n^2 t}.$$

(f) Use your answers to the above to write out a formula for u(x,t).