Introduction to Analysis Exam 1

- 1. (5 points) Give the definition of supremum of a set.
- 2. (5 points) State the completeness property of real numbers.
- 3. (5 points) Give the definition of limit of a sequence.
- 4. (20 points) Let S be a nonempty set of real numbers, and let $T = \{|x| : x \in S\}$. Suppose S and T are bounded.
 - **a.** Show that $\sup S \leq \sup T$.
 - **b.** Give an example to show that $\sup S = \sup T$ may be false.
- 5. (15 points) Find $\lim_{n \to \infty} \left(\frac{3n^2 + n}{5n^2 6} \right)$. You may use any result from class, but you should give a complete proof.
 - **6.** (30 points)
 - a. Use induction to prove that $4^n \ge n^2$ for all $n \in \mathbb{N}$.
 - **b.** Use part **a.** to prove that $\lim \left(\frac{n}{4^n}\right) = 0$.
- 7. (20 points) Let (x_n) and (y_n) be sequences. Suppose that (x_n) converges to 0, and suppose that $|y_n| < 2$ for all $n \in \mathbb{N}$. Prove that $(x_n y_n)$ converges to 0.

(Note: for this problem you cannot assume that (y_n) converges, so you cannot use the theorem from the text about products of convergent sequences.)