Theorem. If $\lim a_{n}=A$ and $\lim b_{n}=B$, then $\lim a_{n} b_{n}=A B$.
Proof. Let $\epsilon>0$ be given.
Since the sequence $\left(b_{n}\right)$ converges, then it is bounded. Therefore there exists a real number M such that, for every natural number n, we have $\left|b_{n}\right| \leq M$. Define M_{1} to be the larger of M and 1 . Since $M_{1} \geq 1$ then $M_{1}>0$, and for every natural number n we have $\left|b_{n}\right| \leq M_{1}$, so $\left|b_{n}\right| / M_{1} \leq 1$.

Since $\lim a_{n}=A$, then by definition of limit, there exists $K_{1} \in \mathbf{N}$ such that for all $n \geq K_{1},\left|a_{n}-A\right|<$ $\epsilon / 2 M_{1}$.

Define M_{2} to be the larger of $|A|$ and 1 . Since $M_{2} \geq 1$ then $M_{2}>0$, and we have $|A| / M_{2} \leq 1$.
Since $\lim b_{n}=B$, then by definition of limit, there exists $K_{2} \in \mathbf{N}$ such that for all $n \geq K_{1},\left|b_{n}-B\right|<$ $\epsilon / 2 M_{2}$.

Now let K be the larger of K_{1} and K_{2}. For every natural number n greater than K, we have

$$
\begin{aligned}
\left|a_{n} b_{n}-A B\right| & =\left|a_{n} b_{n}-A b_{n}+A b_{n}-A B\right| \\
& \leq\left|a_{n} b_{n}-A b_{n}\right|+\left|A b_{n}-A B\right| \\
& =\left|a_{n}-A\right|\left|b_{n}\right|+\left|b_{n}-B\right||A| \\
& <\left(\frac{\epsilon}{2 M_{1}}\right)\left|b_{n}\right|+\left(\frac{\epsilon}{2 M_{2}}\right)|A| \\
& =\frac{\epsilon}{2}\left(\frac{\left|b_{n}\right|}{M_{1}}+\frac{|A|}{M_{2}}\right) \\
& \leq \frac{\epsilon}{2}(1+1)=\epsilon,
\end{aligned}
$$

which proves that

$$
\left|a_{n} b_{n}-A B\right|<\epsilon
$$

