Math 5403 - Calculus of Variations Assignment 2

1. Define a functional J on $C^{1}[0,1]$ by

$$
J[y]=\int_{0}^{1}\left(y^{\prime}\right)^{2}\left(1-y^{\prime}\right) d x
$$

and define $\hat{y} \in C^{1}[0,1]$ by setting $\hat{y}(x)=0$ for all $x \in[0,1]$. We will be looking at values of $J[y]$ when y satisfies the boundary conditions $y(0)=0$ and $y(1)=0$.
a) Show that \hat{y} is a weak local minimum for J, by showing that $J[y] \geq J[\hat{y}]$ for all y such that $\|y-\hat{y}\|_{s}<1 / 2$.
b) Show that \hat{y} is not a strong local minimum for J, even if we restrict the admissible variations to the set $S=\left\{h \in C^{1}[0,1]: h(0)=h(1)=0\right\}$.

Hint: define h to be the piecewise linear function whose graph consists of the line segment connecting the point $(0,0)$ to the point $\left(1-\epsilon^{2},-\epsilon / 2\right)$, and the line segment connecting the point $\left(1-\epsilon^{2},-\epsilon / 2\right)$ to the point $(1,0)$. Show that if ϵ is small enough then $\|h\|_{w} \leq \epsilon$, and $J[\hat{y}+h]<J[\hat{y}]$. (Actually this is technically not enough to finish the problem, because this h is not in C^{1} and therefore not admissible. But you can ignore this technical point if you like.)
c) Show that the only solution of the Euler-Lagrange equation for J which satisfies the given boundary conditions is $\hat{y} \equiv 0$. Conclude that J does not have any strong minimum for the given boundary conditions.
2. Find the general solution of the Euler-Lagrange equation for the functional

$$
J[y]=\int_{a}^{b} x \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

The answer should contain two arbitrary constants.
3. Find the general solution of the Euler-Lagrange equation for the following functionals:
a) $J[y]=\int_{a}^{b} \frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{y} d x$,
b) $J[y]=\int_{a}^{b} y^{\prime}\left(1+x^{2} y^{\prime}\right) d x$.
4. A line in the $x z$-plane with slope m and passing through the origin is revolved around the z-axis to create a cone.

The cone can be given by the parametric equations

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=m r
$$

where the parameters r and θ satisfy $r \geq 0$ and $0 \leq \theta \leq 2 \pi$. A curve γ on the cone can be given by an equation $r=r(\theta)$ defining r as a function of θ. This problem asks you to the curve of shortest length on the cone connecting two given points $\left(\theta_{a}, r_{a}\right)$ and $\left(\theta_{b}, r_{b}\right)$. (Such a curve is called a geodesic on the cone.)
a) Express the length of γ as a functional of $r(\theta)$, of the form $J[r(\theta)]=\int_{\theta_{a}}^{\theta_{b}} f\left(\theta, r, \frac{d r}{d \theta}\right) d \theta$.
b) Show that the solutions of the Euler-Lagrange equation for minimizers of J must satisfy the equation

$$
\left(1+m^{2}\right) \alpha^{2}\left(\frac{d r}{d \theta}\right)^{2}=r^{2}\left(r^{2}-\alpha^{2}\right)
$$

where α is a constant.
c) Solve this equation to show that the general solution of the Euler-Lagrange equations is given by

$$
r(\theta)=\alpha \sec \left(\frac{\theta+\beta}{\sqrt{1+m^{2}}}\right)
$$

where α and β are arbitrary constants. (Hint: integrate the equation in part b) by separating variables and making the substitution $r=\alpha \sec u$.)
(Food for thought - not part of the assignment: can you give a geometric interpretation of the result in part c)? If you had to make a cone out of paper with geodesics drawn on it, how would you draw them?)

