Complex Analysis II Exam 1

1. Suppose Ω is an open set in \mathbf{C} , and define

 $\mathcal{F} = \{f : f \text{ is holomorphic on } \Omega \text{ and } \operatorname{Re}(f(z)) \leq 0 \text{ for all } z \in \Omega\}.$

Show that \mathcal{F} is a normal family. (Hint: consider e^{-f} .)

2. Give an explicit function f(z) which maps the set

$$\Omega = \{z : \text{Im}(z) > 0 \text{ and } \text{Re}(z) > 0\}$$

conformally onto the unit disc $\{|z| < 1\}$. Verify that your function is conformal. (Hint: first consider the effect of the map $g(z) = z^2$.)

3. Suppose Ω is a holomorphically simply connected open set in \mathbf{C} . Consider the statement: "For every pair of points P and Q in Ω , there exists a conformal self-map f of Ω such that f(P) = Q."

a. Prove the statement in case $\Omega = \mathbf{C}$.

b. Prove the statement in case $\Omega \neq \mathbf{C}$.

4. We define a function u on D(0,1) to be radial if, for all $z = re^{i\theta} \in D(0,1)$, u(z) = f(r), where f(r) is a function which depends only on r, not on θ . Show that if u is radial and harmonic on D(0,1), then u is constant on D(0,1).

5. Suppose Ω is a disk in \mathbf{C} and u is harmonic on Ω .

a. Show that $\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$ is holomorphic on Ω .

b. Show that if γ is a simple closed curve in Ω , then

$$\int_{\gamma} \left(-\frac{\partial u}{\partial y} \ dx + \frac{\partial u}{\partial x} \ dy \right) = 0.$$