Complex Analysis II Final Exam (take-home)

- **1.** Let **H** be the upper half-plane, $\mathbf{H} = \{x + iy : y > 0\}$. Suppose f is holomorphic on **H** and $f(\mathbf{H}) \subseteq \mathbf{H}$. Show that if f(i) = i, then $|f'(i)| \leq 1$.
- **2.a.** Suppose r > 0 and $z_0 \in \mathbb{C}$. Show there exists a constant M (depending only on r) such that for every positive harmonic function u on $\{z : |z z_0| < r\}$, we have $u(z_1) \leq Mu(z_2)$ for any two points z_1 and z_2 in $\{z : |z z_0| < r/2\}$. (Hint: use Corollary 7.6.2)
- **b.** Suppose Ω is a connected open set in \mathbb{C} , and K is a compact subset of Ω . Show there exists a constant M (depending only on K and Ω) such that for every positive harmonic function u on Ω , we have $u(z_1) \leq Mu(z_2)$ for any two points z_1 and z_2 in K.
- **3.** It follows from what we proved in class that the following statements are true for every *bounded* open set Ω :
- (i) if u is continuous on the closure of Ω and harmonic on Ω , and u = 0 on $\partial \Omega$, then $u \equiv 0$ on Ω .
- (ii) if u and v are continuous on the closure of Ω with u harmonic on Ω and v subharmonic on Ω , and $v \leq u$ on $\partial \Omega$, then $v \leq u$ on Ω .

Show, by giving examples, that both of these statements are false for $\Omega = \{z = x + iy : 0 < x < 1\}$. (Hint: consider $\sin \pi z$.)

4. Prove that

$$\cos \pi z = \prod_{n=1}^{\infty} \left(1 - \frac{4z^2}{(2n-1)^2} \right)$$

- **5.** Find product expansions for $\sinh z$ and $\cosh z$.
- **6.** Suppose f and g are holomorphic on an open set Ω . Show there exist holomorphic functions f_1 , g_1 , and h on Ω such that $f = hf_1$ and $g = hg_1$ on Ω , and f_1 and g_1 have no common zeroes.
 - 7. The power series

$$\sum_{j=1}^{\infty} \frac{z^j}{j}$$

defines a holomorphic function f(z) on $\{|z| < 1\}$. Find an open set Ω in \mathbb{C} such that (i) f has a holomorphic extension to Ω and (ii) f does not have a holomorphic extension to any set larger than Ω . (Hint: find a closed-form expression for f(z).)