Exam 1: solutions

1. There were three difficulties with this problem. First, as stated it is incorrect, as is shown by the example $f_n(z) \equiv -n$. Second, even when corrected, its proof, while not too difficult, involves too many steps to make it suitable for a test problem. Third, the hint should have referred to e^f , not e^{-f} .

The problem was actually taken from Ahlfors' text, which uses a different definition of "normal" than the one given in our text. In Ahlfors' text, a family \mathcal{F} of functions on a connected open set Ω is said to be a normal family in the classical sense if every sequence in \mathcal{F} has either a subsequence which converges normally (i.e., compactly on compact subsets of Ω) to a holomorphic complex-valued function, or a subsequence which converges normally to ∞ .

Let's prove a corrected version of the problem: If Ω is a connected open subset of \mathbf{C} , the family \mathcal{F} of all analytic functions f on Ω satisfying Re $f \leq 0$ on Ω is normal in the classical sense.

To prove this, let f_n be a given sequence in \mathcal{F} . Then $|e^{f_n(z)}| \leq 1$ for all $n \in \mathbb{N}$ and all $z \in \Omega$, so by Montel's Theorem, by passing to a subsequence we can assume that e^{f_n} converges normally to a holomorphic function g on Ω . Also, since e^{f_n} is never zero on Ω , it follows from Hurwitz' Theorem that either g is never zero on Ω or $g \equiv 0$ on Ω .

In case $g \equiv 0$ on Ω , then $|e^{f_n}|$ converges normally to the constant function 0, so $|\text{Re } f_n| = |\log |e^{f_n}||$, and therefore also f_n , converge normally to ∞ . Hence from now on we can assume that g is never 0 on Ω .

Let Ω_1 be the set of all $P \in \Omega$ such that f_n converges uniformly on some neighborhood of P to some complex-valued holomorphic function; and let Ω_2 be the set of all $P \in \Omega$ such that f_n converges uniformly on some neighborhood of P to ∞ . We claim that $\Omega_1 \cup \Omega_2 = \Omega$.

Let $P \in \Omega$ be given. Since $g(P) \neq 0$, there exists a disk D_1 centered at g(P) whose closure does not contain 0, and therefore we can define a holomorphic branch of the logarithm, which we'll denote by $\log z$, on $\overline{D_1}$.

Since g is continuous on Ω and e^{f_n} converges normally to g, there exists a disk D centered at P such that for all $z \in \overline{D}$ and all sufficiently large n, both g(z) and $e^{f_n(z)}$ are contained in D_1 . Therefore $\log(e^{f_n})$ is defined on \overline{D} for large n, and since $\log z$ is uniformly continuous on $\overline{D_1}$ we have that $\log(e^{f_n})$ converges uniformly to $\log g$ on \overline{D} .

Now for all $z \in \overline{D}$ and all n sufficiently large,

$$f_n(z) = \log(e^{f_n(z)}) + 2\pi i\alpha_n(z)$$

for some integer $\alpha_n(z)$. Since f_n and $\log(e^{f_n})$ are continuous functions of z, so is $\alpha_n(z)$, and since $\alpha_n(z)$ is integer-valued, it must therefore be constant.

There are now two possibilities: either the sequence of integers $|\alpha_n|$ converges to ∞ , or does not. In the first case, since $\log(e^{f_n(z)})$ converges uniformly to a bounded function g on \overline{D} , then f_n converges uniformly to ∞ on \overline{D} . Hence $P \in \Omega_2$. In the second case, by the Bolzano-Weierstrass theorem we can find a subsequence α_{n_k} which converges to some integer m, and therefore we must have $\alpha_{n_k} = m$ for all sufficiently large k. Then $f_{n_k} = \log(e^{f_{n_k}}) + 2\pi i m$ for large k, so f_{n_k} converges uniformly on \overline{D} to $g + 2\pi i m$. Hence $P \in \Omega_1$. This shows $\Omega = \Omega_1 \cup \Omega_2$.

Since Ω_1 and Ω_2 are clearly open, and Ω is connected, it follows that either $\Omega_1 = \Omega$ or $\Omega_2 = \Omega$. By a standard compactness argument, this completes the proof.

2. The map $g(z)=z^2$ takes $re^{i\theta}$ to $r^2e^{2i\theta}$ and therefore is a one-to-one map from $\Omega=\{\text{Re }z>0,\ 0,\ m\ z>0\}=\{r>0,\ 0<\theta<\pi/2\}$ onto the upper half-plane $H=\{r>0,\ 0<\theta<\pi\}$. Also the Cayley transform h(z)=(z-i)/(z+i) maps H conformally onto the open unit disk. So we can take $f(z)=h\circ g(z)=(z^2-i)/(z^2+i)$. Since g and h are conformal maps, so is f.

3a. The conformal self-maps of **C** are the linear maps f(z) = az + b with $a \neq 0$, so we need to find $a \neq 0$ and b such that aP + b = Q. We can take a = 1 and b = Q - P.

- **3b.** If Ω is the unit disk D, then we can take $f = \phi_{-Q} \circ \phi_P$, where $\phi_a(z) = (1-a)/(1-\bar{a}z)$. Since $\phi_a(a) = 0$ and $\phi_{-a}(0) = a$, it follows that f(P) = Q. If Ω is any holomorphically simply connected open set, then by the Riemann mapping theorem there exists a conformal map g from Ω onto D. By the above, there exists a conformal self-map h of D such that h(g(P)) = g(Q), so we can define $f = g^{-1} \circ h \circ g$.
- **4.** By the mean-value property of harmonic functions, we have that, for all $r \in (0,1)$, u(0) equals the average value of u on the circle $C_r = \{|z| = r\}$. But since u(z) = f(r) for all $z \in C_r$, then this average value is f(r). In other words,

$$u(0) = \frac{1}{2\pi r} \int_C u \, ds = \frac{f(r)}{2\pi r} \int_C 1 \, ds = \frac{f(r)}{2\pi r} \cdot 2\pi r = f(r).$$

Therefore $u(re^{i\theta}) = f(r) \equiv u(0)$, so u is constant on D.

- **5a.** Using subscripts to denote partial derivatives, we have that $(u_x)_x = (-u_y)_y$ on Ω because $u_{xx} + u_{yy} = 0$, and $(u_x)_y = -(-u_y)_x$ on Ω because, being C^2 , u has equal mixed partial derivatives by Clairaut's theorem from calculus. So u_x and $-u_y$ satisfy the Cauchy-Riemann equations on Ω , and since u_x and $-u_y$ are C^1 , this is enough to conclude that $u_x iu_y$ is holomorphic on Ω .
 - **5b.** By part **a** and the Cauchy integral theorem, we know that

$$0 = \int_{\gamma} (u_x - iu_y) \ dz = \int_{\gamma} (u_x - iu_y) (dx + idy) = \int_{\gamma} (u_x \ dx + u_y \ dy) + i \int_{\gamma} (-u_y \ dx + u_x \ dy).$$

Since a complex number is zero only if its real and imaginary parts are zero, then $\int_{\gamma} (-u_y \ dx + u_x \ dy) = 0$.