Math 5453 Test 2

- 1. (20 points) Prove that the union $E = \bigcup E_k$ of a countable number of measurable sets is measurable, with $|E| \leq \sum |E_k|$.
- **2.** (15 points) Prove that if f is measurable and finite a.e. on a set E, and ϕ is continuous on \mathbf{R} , then $\phi(f)$ is measurable on E.
- **3.** (15 points) Prove that if f is measurable on \mathbf{R}^n and h is a fixed element of \mathbf{R}^n , then the function $g(\mathbf{x})$ defined by

$$q(\mathbf{x}) = f(\mathbf{x} + \mathbf{h})$$

is measurable on \mathbf{R}^n .

4. (15 points) Suppose $|E| < \infty$, and $\{f_k\}$ is a decreasing sequence of measurable functions on E such that $\lim_{k \to \infty} f_k(x) = 0$ for all $x \in E$. For each k define

$$E_k = \{ \mathbf{x} \in E : f_k(\mathbf{x}) > 1 \}.$$

Prove that $\lim_{k\to\infty} |E_k| = 0$.

- **5.** (15 points) Suppose f and g are continuous functions defined on an open subset G of \mathbf{R}^n , and suppose f=g almost everywhere on G. Prove that f=g everywhere on G.
- **6.** (20 points) Suppose a is a given real number such that 0 < a < 1.
 - **a.** Suppose $E \subset \mathbf{R}$ is measurable and |E| > 0. Prove there exist disjoint open intervals $\{I_k\}$ such that $E \subset \bigcup_{k=1}^{\infty} I_k$ and

$$\sum_{k=1}^{\infty} |I_k| < \left(\frac{1}{a}\right) |E|.$$

b. Prove that if $E \subset \mathbf{R}$ is measurable and |E| > 0, then there exists some open interval I in \mathbf{R} such that $|E \cap I| > a|I|$. (Hint: assume the contrary and use part a.)