Math 5453 Final Exam

- **1.** (15 points)
 - **a.** State and prove Fatou's Lemma for non-negative measurable functions. You may assume the Monotone Convergence Theorem.
 - **b.** State and prove the Dominated Convergence Theorem for non-negative measurable functions. (Use Fatou's Lemma.)
- **2.** (15 points) Suppose f is a measurable function on E and $a < f(\mathbf{x}) \le b$ for all $\mathbf{x} \in E$, where a and b are finite real numbers. Let $\omega(\alpha)$ be the distribution function for f on E. Prove that

$$\int_{E} f = -\int_{a}^{b} \alpha \ d\omega(\alpha).$$

- **3.** (15 points)
 - **a.** Let $f(x) = x^{-1/2}$ on E = [0, 1]. Compute the distribution function $\omega(\alpha)$ of f. (Find simple formulas for $\omega(\alpha)$ which define it piecewise on the domain $\alpha \in (-\infty, \infty)$.)
 - **b.** We proved in class that if f is finite a.e. and measurable on E, and either $\int_E f$ or $\int_{-\infty}^{\infty} \alpha \ d\omega(\alpha)$ is finite, then the other exists and is finite, and

$$\int_{E} f = -\int_{-\infty}^{\infty} \alpha \ d\omega(\alpha).$$

Using this fact and your answer to part **a.**, find the integral of $f(x) = x^{-1/2}$ on E = [0, 1]. Justify each step of your computation.

- **4.** (15 points)
 - **a.** Suppose f and g are measurable functions on E and $0 \le f \le g$ on E. Prove that $\int_E f \le \int_E g$.
 - **b.** Suppose f is a measurable function on \mathbf{R} and f is continuous at 0. Prove that

$$\lim_{n \to \infty} n \int_{[0, \frac{1}{n}]} f = f(0).$$

(Hint: use part a.)

5. (15 points) Suppose f is continuous on **R** and $f \in L(\mathbf{R})$. Prove that

$$\lim_{n \to \infty} \int_{[0,1]} \left| f\left(x + \frac{1}{n}\right) - f(x) \right| dx = 0.$$

- **6.** (10 points) Suppose E_k are measurable subsets of E such that $\lim_{k\to\infty} |E_k| = 0$ and $E_{k+1} \subset E_k$ for all k. Prove that if $f \in L(E)$ then $\lim_{k\to\infty} \int_{E_k} f = 0$.
- 7. (15 points) Suppose $\{f_n\}$ is a sequence of measurable functions defined on a measurable subset E of \mathbb{R}^n . Let

$$S = \{ \mathbf{x} \in E : \text{ the sequence } \{ f_n(\mathbf{x}) \} \text{ converges} \}.$$

(Here "converges" means "converges to a finite limit".) Prove that S is measurable.