Math 5463 — Spring 2013 Final Exam

- **1.** Suppose (X, μ) is a measure space and f_n are functions in $L^p(X, \mu)$ which converge pointwise to a function f. Suppose also that there exists a constant $M < \infty$ such that $||f_n|| \le M$ for all $n \in \mathbb{N}$. Show that f is in $L^p(X, \mu)$.
- **2.** Suppose (X, Σ, μ) is a measure space with $\mu(X) < \infty$. Show that if f is any function in $L^8(X, \mu)$, then f is also in $L^7(X, \mu)$ and

$$||f||_{L^7} \le ||f||_{L^8} \cdot \mu(X)^{1/56}.$$

(Hint: use Hölder's inequality.)

- **3.** Suppose $\{e_n\}$ are orthonormal vectors in a Hilbert space H, and x is an element of H. Show that if $\epsilon > 0$, and S is the set of all numbers n for which $|\langle x, e_n \rangle| > \epsilon$, then S can contain no more than $||x||^2/\epsilon^2$ elements.
- **4.** Suppose ϕ is an additive set function on a measure space (X, Σ) , and V is its total variation. (In Royden and Fitzpatrick, V is denoted by $|\phi|$.) Define $\mu = \frac{1}{2}(V + \phi)$ and $\nu = \frac{1}{2}(V \phi)$. Show that $\mu \perp \nu$.
- **5.** Let X = [0, 2] and define a σ -algebra Σ of subsets of X by $\Sigma = \{\emptyset, [0, 1], (1, 2], [0, 2]\}$.
 - (i) Define $f:[0,2]\to \mathbf{R}$ by f(x)=x. Is f measurable with respect to Σ ? Prove your answer.
 - (ii) Suppose λ is Lebesgue measure on X, and define a measure μ on (X, Σ) by $\mu(E) = \int_E f \ d\lambda$. Find, with proof, the Radon-Nikodym derivative of μ with respect to λ . That is, find the function f_0 which is measurable on (X, Σ) and satisfies $\mu(E) = \int_E f_0 \ d\lambda$ for all E in Σ .
- **6.** In the measure space $(\mathbf{R}, \mathcal{M})$, where \mathcal{M} is the Lebesgue σ -algebra, let λ denote Lebesgue measure and define measures μ and ν by

$$\mu(E) = \lambda(E \cap [0, 2])$$
 and $\nu(E) = \lambda(E \cap [1, 3])$

for all measurable sets E. The Lebesgue decomposition theorem says that there exists a measurable function f and a set Z with $\nu(Z) = 0$ such that for all measurable sets E,

$$\mu(E) = \int_{E} f \ d\nu + \mu(E \cap Z).$$

Find this function f and set Z.

- 7. Let X be a set and let μ^* be an outer measure on the subsets of X. Show that if $\mu^*(E) = 0$, then E is μ^* -measurable.
- **8.** Let X be a set and let C be the collection of all subsets of X which contain just one element. For each set $\{x\}$ in C, define $\mu(\{x\}) = 1$.
 - (i) Find the outer measure μ^* induced by μ .
 - (ii) Which sets are μ^* -measurable?