Math 5463 — Spring 2013 Exam 2

(Note: For these problems, you may cite any result that we have done in class, without having to prove it.)

- 1. Suppose $\{\phi_n\}_{n\in\mathbb{N}}$ is an orthonormal basis of a Hilbert space H.
- a) Show that $\|\phi_m \phi_m\| = \sqrt{2}$ for all natural numbers m and n.
- b) Show that $\{\phi_n\}$ has no subsequence which converges in the norm of H.
- c) Show that there does not exist any x in H such that $\langle x, \phi_n \rangle = 1$ for all $n \in \mathbb{N}$.
- d) Show that there does exist some x in H such that $\langle x, \phi_n \rangle = \frac{1}{n}$ for all $n \in \mathbb{N}$.
- **2.** Suppose ϕ is an additive set function on a measure space (X, Σ) ; and A_1, A_2, \ldots are disjoint measurable subsets of X. Show that

$$\sum_{k=1}^{\infty} |\phi(A_k)| < \infty.$$

(Hint: Use the Jordan decomposition of ϕ .)

- 3. Let $\mathbf{N} = \{1, 2, 3, \dots\}$ be the set of natural numbers, let Σ be the collection of all subsets of \mathbf{N} , and let μ be the counting measure on Σ . Define $f: \mathbf{N} \to \mathbf{R}$ by $f(k) = \frac{1}{2^k}$. Find (with proof) $\int_N f \ d\mu$.
- **4.** Define functions f(x) and g(x) on **R** by

$$f(x) = \begin{cases} 0 \text{ for } x \le 0 \\ 1 \text{ for } x > 0 \end{cases} \text{ and } g(x) = \begin{cases} 1 \text{ for } x \le 0 \\ 0 \text{ for } x > 0. \end{cases}$$

Let λ denote Lebesgue measure, and define measures μ_f and μ_g on the σ -algebra of Lebesgue measurable sets in $\mathbf R$ by setting $\mu_f(A)=\int_A f\ d\lambda$ and $\mu_g(A)=\int_A g\ d\lambda$ for measurable sets A. Say, with proof, whether each of the following statements is true or false.

- a) $\mu_f \ll \lambda$
- b) $\lambda \ll \mu_f$
- c) $\mu_f \perp \mu_g$
- $d) \mu_f \ll \mu_g$