
Adventures in Derangement

The other day I wandered into the edge of a forest, not knowing at the time
how vast it actually was. Before I knew it, I was lost. However, since I had
only gone a little way in, I was pretty confident that if I searched methodically,
I could find my way out. I might even want to sketch a map as I searched. This
is the sketch I produced.

It started one morning when, at breakfast, I found no newspaper at hand. All
there was on the table to read was a pristine copy of Sheldon Ross' Introduction
to Probability Models, bound with an attractive cover showing a stand of birch
trees. My wife had ordered the book from Amazon some months ago, thinking
she might be interested in learning enough about probability to take one of the
actuarial exams. Looking through it, I was reminded of a class in probability I
had taken in college and, over the years, had largely forgotten.

Problem 12 at the end of Chapter 1 was marked with an asterisk. It asked:
suppose there are n men at a party, and each throws his hat into the center of
the room. The hats are then mixed up and redistributed to the men at random.
Show that the probability that no man gets his own hat back is
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Obviously the number of ways to distribute the hats to the n men is n!, so
if we can find the number bn of ways to distribute the hats without giving any
man his own hat, then the desired probability would be pn = bn/n!. How to
find a formula for bn? As I later learned, a distribution of hats in which no man
gets his own hat is called a �derangement�. So what I was looking for was a
formula for the number bn of derangements of n objects.

From the formula (1), it seemed that the inclusion-exclusion principle might
be involved. I had seen the principle explained, with a number of examples, in
Counting: the Art of Enumerative Combinatorics by George E. Martin, a text I
had used once for a capstone class. However, I didn't remember it well enough
to see how to apply it here. Also, I thought there might be a nice argument
relating bn to bi for values of i less than n: this might lead to a recurrence
relation which could be used to given an inductive proof of the formula (1) for
pn. In other words, I was looking for a �combinatorial proof� of the recurrence
relation.

I figured out the values of bn for the first few values of n, by using the
formula (1), and also by writing down the possible ways of redistributing hats
to three or four or five people. The values are b2 = 1, b3 = 2, b4 = 9, b5 = 44,
b6 = 265,. . . . By thinking about different ways of distributing the hats, I came
up with the recurrence relation

bn = (n− 1) (bn−1 + bn−2) (2)

for n ≥ 3, which was obviously correct, because it fit the values of the sequence
up through b6. However, at this point I got distracted and put the problem
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aside. When I came back to it a week or so later, I couldn't remember how
I had found the recurrence relation, and finally realized that whatever proof I
had must have been incorrect. So I sat down and worked out a correct proof
this time. My first correct proof was quite long and not fully combinatorial, but
after more work I was able to find what is clearly the right proof.

It goes like this. Pick one man, and call him Joe. There are n−1 other hats
that Joe could receive. Let the owner of the hat Joe receives be called Frank. If
it so happens that Frank receives Joe's hat in return, then there are bn−2 ways
to redistribute the remaining n−2 hats among the remaining n−2 men, so that
none of them get their own hat. This gives a total of (n− 1)bn−2 derangements
of the n hats.

Alternatively, it might happen that Frank does not receive Joe's hat. In this
case, take the hat Frank received and give it to Joe, and then take Frank's hat
away from Joe and remove Frank and his hat from the room. Now the situation
is just as if Frank was never there: there are n − 1 men and their hats in the
room, and no one has their own hat. There are bn−1 possible derangements
of these n − 1 hats. Conversely, each of these bn−1 derangements produces a
derangement of the original n men and their hats: to do this, bring Frank and
his hat back into the room, and have Frank switch hats with Joe. So there are
exactly bn−1 derangements of the n hats in which Joe has Frank's hat but Frank
does not have Joe's hat. Since there were n−1 ways to choose Frank, this gives
(n− 1)bn−1 possible derangements.

We have now covered all the possibilities: (n−1)bn−2 derangements in which
Frank exchanges hats with another of the men, and (n− 1)bn−1 possibilities in
which he does not. Adding these two numbers, we get the formula (2) for bn.

The next step was to use the recurrence relation to show that pn satisfies (1).
I did this using brute force induction, replacing bk by k!pk for k = n, n−1, n−2
in (2), and using algebra to check that both sides agree. In fact, I had tried
doing this on my first attempt at the problem a week earlier, and though the
algebra was simple, it was a bit messy, and I still hadn't got the two sides to
match after quite a bit of work. This time I sat down and finished it.

At this point I did a Google search to see what I could find about the problem
on the internet. The first thing I found was a nice video by Aloha Churchill
on YouTube, titled �Hat/Matching Probability Question (Derangement Proof)�,
in which she explains how to find the formula (1) for pn using the inclusion-
exclusion principle.

Next I found several posts on the topic at MathStackExchange. In the
top-rated answer to the question 83380, a simpler way to get to (1) from the
recurrence relation was presented. First, subtract nbn−1 from both sides of (2)
and rearrange to get

bn − nbn−1 = − (bn−1 − (n− 1)bn−2) ,

which, together with the fact that b3 − 3b2 = −1, immediately leads to the
simpler recurrence relation

bn = nbn−1 + (−1)n (3)
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for n ≥ 3. Dividing both sides by n! gives

pn = pn−1 +
(−1)n

n!
,

which proves (1).
Finally, I went to the Online Encyclopedia of Integer Sequences and entered

the list �1, 2, 9, 44, 265� into the search bar. This brought up the entry �A000166:
Subfactorial or rencontres numbers, or derangements: number of permutations
of n elements with no fixed points�. It was here that it became apparent how
deep the forest was that I had wandered into. There was a long list of comments,
describing various incarnations of the sequence. For example, one comment says
that bn counts �the number of wedged (n− 1)-spheres in the homotopy type of
the Boolean complex of the complete graph Kn�; while another refers to �a
family of recurrences found by Malin Sj�odahl for a combinatorial problem for
certain quark and gluon diagrams�.

The comments were followed by an even longer list of references, formulas,
and examples. It turns out the problem has a long history, and was solved
and re-solved several times in the 18th century by Jean and Nicolas Bernoulli,
Montmort, de Moivre, and Euler, among others (see the notes below for online
references to the sources). But now that we have found our way out into the
light again after our first venture into the forest, let's postpone our further
exploration to another time!

NOTES:

� I assumed the asterisk meant the problem was a difficult one. Later I
realized that it actually meant that the solution to the problem was given
at the end of the book. In fact, the exclusion-inclusion principle is covered
in Chapter 1, and as an example, the problem is solved there for n = 3
� which essentially explains the solution of the problem for general n as
well. If I had read that example first, I might not have ever given the
problem a second thought!

� Aloha Churchill's YouTube video is at:

https://www.youtube.com/watch?v=1QAzjQWCk48 .

� In the same answer to question 83380 on MathematicsStackExchange that
is mentioned above, it is proved that bn is actually the nearest integer to
n!/e.

� The Online Encyclopedia of Integer Sequences is at https://oeis.org .

� For a glimpse of the type of analysis that Malin Sj�odahl does, see her
paper on arXiv at:

https://arxiv.org/pdf/1503.00530 .
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� The history of the problem I had found in Ross' textbook dates back to
Nicholas Bernoulli and Leonhard Euler, among others.

In Euler's paper �Solutio quaestionis curiosae ex doctrina combinationum�
or �The solution of a curious question in the doctrine of combinatorics�,
written in 1779, four years before his death, and published posthumously
in M²moires de l'acad²mie des sciences de St.-Petersbourg, Volume 3,
1811, pp. 57�64, he proved both recurrence relations (2) and (3), with
essentially the same proofs I gave above. This paper is available, both in
the original Latin, and in an English translation, at

https://scholarlycommons.pacific.edu/euler-works/738

However, it seems the problem had been more or less solved much earlier.
Pierre Renard de Montmort corresponded with Jean Bernoulli about it,
and Nicolas Bernoulli added some commentary, in 1710. See the account in
�Diverse problems concerning the game of treize�, an extract of Montmort's
Essay d'Analyse sur les Jeux de Hasard, 2nd edition of 1713, pp. 130-143,
and accompanying excerpts of the correspondence, in:

http://www.probabilityandfinance.com/

pulskamp/Montmort/essai_treize_98_114.pdf .

Abraham de Moivre also solves the problem in his book The Doctrine

of Chances, 3rd edition 1756. It appears as Problem XXXV on pages
109�117. See:

http://www.probabilityandfinance.com/pulskamp/

Moivre/doctrine%20of%20chances%20prob%2035_36-derangements.

pdf

� Richard Stanley, in Volume 1 of his comprehensive text Enumerative Com-

binatorics, features this problem prominently, stating it at the beginning of
Chapter 1, and giving a complete treatment near the beginning of Chapter
2. Stanley credits Montmort with the first solution of the problem.

He also mentions that the recurrence relation (3) can be given a direct
combinatorial proof (as opposed to the proof I gave above, in which first
(2) is proved combinatorially and then some algebra is used to derive
(3)). Stanley leaves the task of finding a combinatorial proof of (3) as an
exercise for the reader. I haven't found such a proof yet myself.
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