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Abstract This project aims to cast light on a Boussinesq system of equations modelling two-
way propagation of surface waves. Included in the study are existence results, comparisons
between the Boussinesq equations and other wave models, and several numerical simulations.
The existence theory is in fact a local well-posedness result that becomes global when the
solution satisfies a practically reasonable constraint. The comparison result is concerned
with initial velocities and wave profiles that correspond to unidirectional propagation. In this
circumstance, it is shown that the solution of the Boussinesq system is very well approximated
by an associated solution of the KdV or BBM equation over a long time scale of order 1

ε
,

where ε is the ratio of the maximum wave amplitude to the undisturbed depth of the liquid.
This result confirms earlier numerical simulations and suggests further numerical experiments,
some of which are reported here. Our results are related to recent results of Bona, Colin and
Lannes [11] comparing the KdV equation to the full two-dimensional Euler equations (see
also the recent work of Schneider and Wayne [26] and Wright [30]).

1. Introduction

In this report, attention will be directed to a Boussinesq system of partial differential
equations,

ηt + vx + ε(ηv)x − 1

6
εηxxt = 0,

vt + ηx + εvvx − 1

6
εvxxt = 0,

(1.1)

1
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posed for (x, t) ∈ R× R+, with prescribed initial data

(1.2) η(x, 0) = η0(x), v(x, 0) = v0(x), x ∈ R.

The system (1.1) is a model equation for surface waves in a uniform horizontal channel filled
with an irrotational, incompressible and inviscid liquid under the influence of gravity. These
equations are considerably simpler than the full Euler equations,

εφxx + Sφyy = 0 in {0 < y < 1 + εη(x, t)},
φt +

1

2

(
εφ2

x + Sφ2
y

)
+ η = 0 on {y = 1 + εη(x, t)},

ηt + εφxηx − S

ε
φy = 0 on {y = 1 + εη(x, t)},
φy = 0 on {y = 0},

(1.3)

for two-dimensional water waves in a channel with a flat bottom. Here the independent
variable x determines position along the channel, y is the vertical coordinate, and t is propor-
tional to elapsed time. The dependent variable φ = φ(x, y, t) is the velocity potential (so ∇φ
is the velocity field), and the dependent variable η = η(x, t) represents the vertical deviation
of the free surface from its rest position at the point x at time t. The equations have been
non-dimensionalized by scaling the variables: x is scaled by λ, a representative wave length;
y is scaled by h0, the undisturbed water depth; t is scaled by λ/c0, where c0 =

√
gh0 with g

being the acceleration of gravity; η is scaled by a, a representative wave amplitude; and φ is
scaled by gaλ/c0. The non-dimensional parameters ε and S (the Stokes number) are defined
by ε = a/h0 and S = aλ2/h3

0.
The system (1.1) can be derived from (1.3) via a formal asymptotic expansion under the

assumptions that ε is small and that S is of order one. (In fact, for purposes of notational
convenience, in writing (1.1) the value of S has been set exactly equal to one; had S been
allowed to take more general values, both occurrences of the constant 1

6
in (1.1) would have

been replaced by 1
6
S. In the remainder of this paper the assumption that S = 1 will remain

in force whenever reference is made to the system (1.3).) These assumptions on ε and S
correspond to the physical assumptions that the waves being modelled have small amplitude
and long wavelength relative to the water depth, with the condition S ∼ 1 corresponding to
a certain balance obtaining between the nonlinear effects owing to small but not infinitesimal
amplitudes and frequency dispersion coming from large, but finite wavelengths. The variables
x, y, t, and η in (1.1) retain the same interpretations as in (1.3); and the new independent

variable v(x, t) is the horizontal velocity of the fluid at the point (x, y) = (x,
√

2/3), scaled by
the factor ag/c0. That is, v represents the horizontal velocity at points whose distance from

the channel bottom is
√

2/3 times the depth of the undisturbed fluid. This choice of variable
v is, as explained in Bona, Chen and Saut [9, 10], related to the particular form which (1.1)
takes, in opposition to other Boussinesq systems which are formally equivalent to (1.3) but
which may have different mathematical properties.

One way in which (1.1) differs from other Boussinesq systems is that it is easier to integrate
numerically. This fact was exploited in an earlier study [8], where numerical approximations
of solutions of (1.1) were used to explore such phenomena as collisions between solitary waves
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which move in opposite directions. It was also observed in [8] that (1.1) has solitary-wave
solutions that closely resemble solitary-wave solutions of the BBM equation

(1.4) qt + qx +
3

2
εqqx − 1

6
εqxxt = 0.

For discussions of solitary-wave solutions of (1.1) and other Boussinesq systems, see [6, 19,
27, 28].

Equation (1.4), like the system (1.1), is a model equation for long, small-amplitude water
waves; but has been simplified further through the assumption that the waves being modelled
propagate only in one direction. It is therefore to be expected that the solitary-wave solutions
of (1.1), being purely unidirectional, should resemble those of (1.4). It is the purpose of this
paper to establish a similar correspondence between more general solutions of (1.1) and (1.4).

Below, a result is obtained showing that if the motion in the channel is properly initiated,
then the solution of the Boussinesq system (1.1)-(1.2) exists and is tracked by a directly
associated solution of the BBM equation (1.4) over the long time scale 1

ε
. More precisely, it

is shown that if g(x) is a given initial wave profile, then if we consider the BBM equation
(1.4) with initial value g and the Boussinesq system (1.1) with initial values

η(x, 0) = g(x), v(x, 0) = g(x)− 1

4
εg(x)2,

then

|η − q| = O(ε2t) and

∣∣∣∣v −
(

q − 1

4
εq2

)∣∣∣∣ = O(ε2t)

at least for t of order 1
ε
. As explained in [2], [11] and [14] for example, all the dependent

variables η, q and v are of order one, so this result shows that at time t = O(1
ε
), the difference

between η and q (and between v and q − 1
4
εq2) lies at the order that can be attributed to

the neglected terms in the approximation. Thus, at the theoretical level, one should not
distinguish between (1.1) and (1.4) provided waves that are moving sensibly in one direction
are in question. This theoretical result has its roots in the Ph.D. thesis of Alazman [1],
directed by Albert at the University of Oklahoma.

In light of the work of Bona, Pritchard, and Scott [14] comparing solutions of the BBM
equation (1.4) to solutions of the KdV equation

(1.5) rt + rx +
3

2
εrrx +

1

6
εrxxx = 0,

our result is equivalent to a comparison between solutions of (1.1) and (1.5) (see Theorems
3.1 and 3.4 below). It is also closely related to recent results of Bona, Colin and Lannes [11]
comparing solutions of the KdV equation and Boussinesq-type systems to solutions of the
two-dimensional Euler equations (1.3) (see also Craig [21], Schneider and Wayne [26], and
Wright [29, 30]).

Our analysis begins with a study of the well-posedness of the initial-value problem (1.1)-
(1.2). An informal interpretation of the principal well-posedness result is that as long as the
channel bed does not run dry, the solution continues to exist. A technical description of this
result will appear in Section 2.
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The statement of the main comparison result is given at the beginning of Section 3, along
with a discussion of the related comparison results mentioned above. The remainder of Section
3 contains a detailed proof of the main result.

The theory developed in Section 3 motivates several accurate numerical experiments whose
results are reported in Section 4. They further illuminate the relation between the Boussinesq
system and the BBM equation. In particular, some of the comparisons exhibited are quite
startling.

The paper closes with a brief conclusion which provides an appreciation of the present
development and indications of interesting related lines of investigation.

2. Well-posedness results

We begin with a précis of the notation to be used in the technical sections of the paper. For
1 ≤ p < ∞, Lp denotes the space of equivalence classes of Lebesgue measurable, pth-power
integrable, real-valued functions defined on the real line R. The usual modification is in effect

for p = ∞. The norm on Lp is written as ‖ · ‖Lp . For f ∈ L2, the Fourier transform f̂ of f is
defined as

f̂(k) =

∫ ∞

−∞
e−ikxf(x) dx.

For s ≥ 0, the L2-based Sobolev class Hs is the subspace of those L2 functions whose deriva-
tives up to order s all lie in L2, and the norm on Hs is taken to be

‖f‖2
s =

∫ ∞

−∞
(1 + k2)s|f̂(k)|2 dk.

For non-negative integers m, Cm
b is the space of m-times continuously differentiable, real-

valued functions define on R whose derivatives up to order m are bounded on R. The norm
is

‖f‖Cm
b

= sup
x∈R

∑
0≤j≤m

|f (j)(x)|.

For any Banach space X and real number T > 0, C(0, T ; X) is the class of continuous
functions from [0, T ] to X. If X = L2, we write LT for C(0, T ; L2). Similarly, we write Bk

T

for C(0, T ; Ck
b ) and Hk

T for C(0, T ; Hk), k = 1, 2, · · · . Of course, H0
T = LT . If X and Y are

Banach spaces, then their Cartesian product X × Y is a Banach space with a product norm
defined by ‖(f, g)‖X×Y = ‖f‖X + ‖g‖Y .

Attention is now turned to the well-posedness theory. The principal result is the following.

Theorem 2.1. (i) Let (η0, v0) ∈ Hk ×Hk, where k ≥ 0. Then there exists T > 0, depending
only on ‖(η0, v0)‖Hk×Hk , and a unique solution pair (η, v) ∈ Hk

T × Hk
T for the system of

integral equations (2.2) below. For any k ≥ 0, (η, v) comprises a distributional solution of the
initial-value problem (1.1)-(1.2). If k ≥ 2, then (η, v) is a classical solution of (1.1)-(1.2).
The mapping that associates to initial data the corresponding solution of (2.2) is uniformly
Lipschitz continuous on any bounded subset of Hk ×Hk.

(ii) The conclusions of (i) still hold if Hk is replaced by Cm
b , where m ≥ 0, and Hk

T is
replaced by Bm

T . In this case, (η, v) is a classical solution of (1.1)-(1.2) if m ≥ 1.
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(iii) Let T0 ∈ (0,∞] be the maximal existence time for the solution described in (i); i.e., T0

is the supremum of the set of values of T such that the solution exists on the interval [0, T ].
If there exist numbers α > 0 and a < T0 such that

1 + εη(x, t) > α

for all x ∈ R and all t ∈ (a, T0), then T0 = ∞. Also, if there exist numbers M ∈ R and a ∈ R
such that

‖(η(·, t), v(·, t))‖L2×L2 ≤ M

for all t ∈ (a, T0), then T0 = ∞.

Remark 2.2. It is worth emphasis that Theorem 2.1 is a local well-posedness result, not a
global theorem. The criteria in (iii) provide sufficient conditions for solutions to be global. It
seems likely that for ε small, initial data that is of order one will develop into globally defined
solutions. However, numerical simulations not reported here suggest that large data may
lead to solutions that form singularities in finite time. Both the criteria in (iii) are more than
plausible; indeed, any physically relevant solution will certainly satisfy both these conditions.
In particular, the condition 1 + εη > 0, when interpreted in the original physical variables,
means simply that the total water height does not reach zero, which is to say the channel
does not become dry.

The proof of Theorem 2.1 is similar to the proofs given for analogous results in [3], [8]
and [10]. The details are therefore only sketched. Certain aspects of the proof offered below
reappear in Section 3 in the proof of the main comparison result.

To begin, write the system (1.1) in the form
(

1− 1

6
ε∂2

x

)
ηt = − (v(1 + εη))x ,

(
1− 1

6
ε∂2

x

)
vt = −

(
η +

ε

2
v2

)
x
.

Inverting the operator
(
1− 1

6
ε∂2

x

)
subject to zero boundary conditions at infinity leads to the

relations

ηt = Mε ∗ (v(1 + εη))x,

vt = Mε ∗
(
η +

ε

2
v2

)
x
,

(2.1)

where the kernel Mε is defined via its Fourier transform, viz.,

M̂ε(k) = −
(

1

1 + εk2/6

)
.

Direct calculation using the Residue Theorem shows that for x ∈ R,

Mε(x) = −1

2

√
6

ε
e−
√

6/ε|x|.
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Integrating by parts in (2.1) and then integrating with respect to t over the interval (0, t)
yields

η(x, t) = η0(x) +

∫ t

0

Kε ∗ (v(1 + εη)) dτ,

v(x, t) = v0(x) +

∫ t

0

Kε ∗
(
η +

ε

2
v2

)
dτ

(2.2)

where

Kε =
3

ε
(sgn x)e−

√
6/ε|x| and K̂ε(k) =

−ik

1 + εk2/6
.

The following technical lemma about the action of convolution with Kε and Mε will be
used immediately and later on as well. Their proof involves elementary considerations which
are here omitted.

Lemma 2.3. There are constants C independent of f, g and ε > 0 such that the following
inequalities hold. For any s ≥ 0,

(2.3) ‖Kε ∗ f‖s ≤ Cε−
1
2‖f‖s,

‖Kε ∗ f‖s ≤ C‖f‖s+1,

‖Kε ∗ f‖s+1 ≤ Cε−1‖f‖s,

(2.4) ‖Kε ∗ (fg)‖L2 ≤ Cε−3/4‖f‖L2‖g‖L2 ,

(2.5) ‖Mε ∗ f‖s ≤ C‖f‖s.

For any integer m ≥ 0,

(2.6) ‖Kε ∗ f‖Cm
b
≤ Cε−

1
2‖f‖Cm

b
,

(2.7) ‖Kε ∗ (fg)‖Cm
b
≤ Cε−

1
2‖f‖Cm

b
‖g‖Cm

b
.

The proof of part (i) of Theorem 2.1 will now be considered. Let T > 0 be arbitrary for the
moment, and write the pair of integral equations (2.2) symbolically as (η, v) = A(η, v). Here
A is the obvious mapping of functions with domain R× [0, T ] defined by the right-hand side
of (2.2). It will be shown that the mapping A is contractive on a suitable subset of LT ×LT .
Indeed, take any two elements (η1, v1) and (η2, v2) from LT × LT , and notice that

‖A(η1, v1)− A(η2, v2)‖LT×LT

=

∥∥∥∥
∫ t

0

Kε ∗ (v1 − v2 + ε(η1v1 − η2v2))dτ

∥∥∥∥
LT

+

∥∥∥∥
∫ t

0

Kε ∗ (η1 − η2 +
1

2
ε(v2

1 − v2
2))dτ

∥∥∥∥
LT

.
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Apply the basic estimates in Lemma 2.3 to derive the inequality

‖A(η1, v1)− A(η2, v2)‖LT×LT

≤ CT
[
ε−

1
2‖v1 − v2‖LT

+ ε
1
4 (‖η1 − η2‖LT

‖v1‖LT
+ ‖η2‖LT

‖v1 − v2‖LT
)
]

+ CT
[
ε−

1
2‖η1 − η2‖LT

+ ε
1
4 (‖v1‖LT

+ ‖v2‖LT
)‖v1 − v2‖LT

]

≤ CTε−
1
2 [1 + ‖(η1, v1)‖LT×LT

+ ‖(η2, v2)‖LT×LT
]×

‖(η1, v1)− (η2, v2)‖LT×LT
.

Suppose that both (η1, v1) and (η2, v2) are in the closed ball BR of radius R about the zero
function in LT × LT . Then, the last estimate leads to the inequality

(2.8) ‖A(η1, v1)− A(η2, v2)‖LT×LT
≤ Θ‖(η1, v1)− (η2, v2)‖LT×LT

where Θ = CTε−
1
2 (1 + 2R). If Θ < 1 and A maps BR to itself, then the hypothesis of the

contraction mapping theorem will be satisfied. By application of (2.8),

‖A(η, v)‖LT×LT
≤ Θ‖(η, v)‖LT×LT

+ ‖η0‖L2 + ‖v0‖L2 ≤ ΘR + b.

Thus if b ≤ (1 − Θ)R, then A maps BR to itself. Choosing R = 2b and T = C
2
ε

1
2 (1 + 2R)−1

gives a closed set BR in LT × LT on which A is a contractive self map. This proves existence
in LT × LT for some T > 0.

Next, observe that from Lemma 2.3 if f ∈ Hs, then Kε ∗ f ∈ Hs+1. Therefore a standard
bootstrap type argument allows one to conclude that if (2.2) has a solution in LT ×LT whose
initial data happens to lie in Hs ×Hs, then this solution is in fact in Hs

T ×Hs
T . Moreover,

the continuity of the solution map follows easily from the simple dependence of the operator
A on the initial data. Indeed, further analysis shows that the solution map is analytic.

The question of uniqueness is now considered. Let (η1, v1) and (η2, v2) be two solutions of
(2.2) in LT × LT , and let

(η, v) = (η1, v1)− (η2, v2).

The pair (η, v) satisfies the integral equations

η =

∫ t

0

Kε ∗ (v1 − v2 + ε(η1v1 − η2v2)) dτ,

v =

∫ t

0

Kε ∗ (η1 − η2 +
1

2
ε(v2

1 − v2
2)) dτ.

As in the proof of the existence result, the following estimate obtains:

‖(η, v)‖L2×L2 ≤ Cε−
1
2

∫ t

0

[
1 + ‖(η1, v1)‖L2×L2 + ‖(η2, v2)‖L2×L2

]
·

‖(η1, v1)− (η2, v2)‖L2×L2 dτ

≤ D

∫ t

0

‖(η, v)‖L2×L2 dτ,

where D is independent of t ∈ [0, T ]. Gronwall’s Lemma then implies that η = 0 and v = 0
on [0, T ], so proving uniqueness. The proof of part (i) of the Theorem is now complete.
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For part (ii), we merely note that in view of (2.6) and (2.7), the same contraction-mapping
argument yields local existence for initial data in Cm

b , and the same uniqueness and boot-
strapping argument applies as well.

The global existence result stated in part (iii) of Theorem 2.1 depends on the invariance
of the functional

E(t) = E(η, v, t) =

∫ ∞

−∞

[
η2 + (1 + εη)v2

]
dx.

Lemma 2.4. Let (η, v) be a solution pair of the initial-value problem (1.1),(1.2) in Hs
T ×Hs

T ,
for some s ≥ 1

6
. Then E(t) = E(0) for all t ∈ [0, T ].

Proof. Assume first that (η, v) is sufficiently regular for the following formal calculations
to be valid; say, (η, v) ∈ (H1

T × H1
T ) ∩ (B3

T × B3
T ). Multiply the first equation in (1.1) by

(η + 1
2
εv2− 1

6
εvxt) and the second by (v + εvη− 1

6
εηxt), add them, and integrate with respect

to x to reach the relation∫ ∞

−∞

(
ηt

[
η +

ε

2
v2 − 1

6
εvxt

]
+ vt

[
v + εvη − 1

6
εηxt

])
dx

= −
∫ ∞

−∞

([
η +

ε

2
v2 − 1

6
εvxt

] [
v + εvη − 1

6
ε = ηxt

])

x

dx = 0.

Regroup the terms on the left-hand side to obtain

(2.9)

∫ ∞

−∞

(
1

2

[
η2 + (1 + εη)v2

]
t
− 1

6
ε [ηtvxt + vtηxt]

)
dx = 0.

Since ∫ ∞

−∞
[ηtvxt + vtηxt] dx =

∫ ∞

−∞
(ηtvt)x dx = 0,

it follows from (2.9) that
d

dt

∫ ∞

−∞

[
η2 + (1 + εη)v2

]
dx = 0,

and hence E(t) = E(0) for all t ∈ [0, T ].
Now suppose that (η, v) is, say, a solution in Hs

T ×Hs
T with s ≥ 1

6
. We can approximate

(η0, v0) by regular initial data (η0j, v0j) and thus obtain solutions (ηj, vj) on [0, T ] to which
the above calculation applies, and which, by Theorem 2.1(i), approximate (η, v) in Hs

T ×Hs
T .

Moreover, since Hs is continuously embedded in L3 by the Sobolev embedding theorem, then
(ηj, vj) also approximates (η, v) in C(0, T ; L3)× C(0, T ; L3). The desired result then follows
by passing to the limit as j →∞. ¤
Remark 2.5. The functional E, together with the functional

F (t) = F (η, v, t) =

∫ ∞

−∞

[
ηv +

ε

6
ηxvx

]
dx,

and the obvious conserved quantities∫ ∞

−∞
η dx and

∫ ∞

−∞
v dx



BOUSSINESQ AND BBM COMPARISONS 9

comprise the only known invariants for the system (1.1). Note that one obtains the invariance
of F by multiplying the first equation in (1.1) by v and the second equation in (1.1) by η,
adding the results, and integrating with respect to x.

The simple idea exposed in the proof of Lemma 2.4 can also be used to obtain an invariant
for a more general type of Boussinesq system.

Corollary 2.6. Consider the following four parameter class of model equations

ηt + ux + (uη)x + auxxx − bηxxt = 0

and
ut + ηx + uux + cηxxx − duxxt = 0.

If b = d, then for sufficiently regular solutions (η, u), the quantity

G(t) =

∫ ∞

−∞

[
η2 + (1 + η)u2 − cη2

x − au2
x

]
dx

is invariant, i.e., G(t) = G(0) for all t ≥ 0.

Remark 2.7. This class of model equations was put forward by Bona, Chen and Saut [9],
[10] as approximations of the two-dimensional free surface Euler equations for the motion of
an ideal, incompressible liquid. In this context, a, b, c and d are not independently specifiable
parameters. This class of equations reappears briefly in the next section (see Theorem 3.7).

The proof of part (iii) of Theorem 2.1 now proceeds by means of the usual continuation-
type argument, as follows. Suppose s > 1

2
so that η(·, t) ∈ Cb(R) for all t during which the

solution exists, and that 1+εη > α > 0 for all x ∈ R and all t ∈ (a, T0). According to Lemma
2.4, for β = max{1, α−1}, we have

‖η‖2
L2

+ ‖v‖2
L2

=

∫ ∞

−∞
(η2 + v2) dx ≤ βE(t) = βE(0)

for all t ∈ (a, T0). Now the local existence result stated in part (i) of the Theorem implies
that if (1.1) is posed with initial data (η(t0), v(t0)) satisfying

‖η(t0)‖2
L2

+ ‖v(t0)‖2
L2
≤ βE(0),

then a solution persists in L2×L2 on the time interval (t0, t0 + 2δ), where δ depends only on
βE(0). If T0 < ∞, one can choose t0 > min(a, T0 − δ), and thereby obtain an extension of
the solution to [0, t0 + δ). A bootstrap argument then immediately yields that this solution
is in fact in Hs

t0+δ ×Hs
t0+δ. But this contradicts the maximality of T0. Hence we must have

T0 = ∞. Obviously, the same argument also shows that T0 = ∞ under the assumption that
‖(η, v)‖L2×L2 remains bounded near T0.

3. The Comparison Results

It was shown in [3] that the BBM equation (1.4) with initial condition q(x, 0) = g(x) has
a unique global solution q ∈ C([0,∞), Hs) if g ∈ Hs with s ≥ 1. Moreover, for each T > 0,
the correspondence g 7→ q is an analytic mapping of Hs to C([0, T ]; Hs) while, if l > 0, the
correspondence g 7→ ∂l

tq is an analytic mapping of Hs to C([0, T ]; Hs+1). This result was
recently improved to include the range s ≥ 0 in [17].
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In this section we consider the circumstances under which solutions of the Boussinesq
system (1.1) can be approximated using appropriate solutions of the BBM equation (1.4).
More precisely, conditions on the initial data (η0, v0) are determined which guarantee that
(1.1) will generate a solution (η, v) in which η is well tracked by the solution q of the (1.4)
with initial data q(x, 0) = η0.

At the lowest order, we expect that if η0 = v0, then the wave described by (η, v) moves
mainly in one direction (see the discussion in [5]). However, the analysis in the last-quoted
reference suggests that this simple imposition of initial data for (1.1) would not yield a solution
which agrees closely with that of the BBM equation on the time scale over which nonlinearity
and dispersion can have an order-one relative effect on the wave profile. Rather, one expects
to have to correct the lowest-order approximation of the relation between amplitude and
velocity at higher order to see the Boussinesq system evincing unidirectional propagation
over such a long time interval. As shown below in Theorem 3.1, this is indeed the case, and
the appropriate relation between the initial amplitude and velocity is

(3.1) η(x, 0) = g(x) and v(x, 0) = g(x)− 1

4
εg(x)2.

3.1. Discussion of the Main Results

The principal new outcome of our analysis is summarized in the first theorem.

Theorem 3.1. Let j ≥ 0 be an integer. Then for every K > 0, there exist constants C and
D such that the following is true. Suppose g ∈ Hj+5 with ‖g‖j+5 ≤ K. Let (η, v) be the
solution of the Boussinesq system (1.1), with initial data defined by (3.1), and let q be the
solution of the BBM equation (1.4) with initial data q(x, 0) = g(x). Define w by

(3.2) w = q − 1

4
εq2.

Then for all ε ∈ (0, 1], if

(3.3) 0 ≤ t ≤ T = Dε−1,

then

(3.4) ‖η(·, t)− q(·, t)‖j + ‖v(·, t)− w(·, t)‖j ≤ Cε2t.

Notice that included as part of Theorem 3.1 is the assertion that the Boussinesq system
has a solution in Hj

T ×Hj
T for T at least as large as D/ε.

When combined with the basic inequality

‖f‖Cb(R) ≤ ‖f‖
1
2

L2(R) ‖f ′‖
1
2

L2(R),

valid for any f ∈ H1(R), Theorem 3.1 yields the following.

Corollary 3.2. Let s ≥ 6 and j ∈ [0, s − 6] both be integers. Then for every K > 0, there
exist constants C and D such that the following is true. Suppose g ∈ Hs with ‖g‖s ≤ K. Let
(η, v) be a solution of the Boussinesq system (1.1), with initial data (1.2) defined by (3.1);
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let q be the solution of the BBM equation (1.4) with q(x, 0) = g(x); and let w be defined by
(3.2). Then for all ε ∈ (0, 1], if

0 ≤ t ≤ T = Dε−1,

then

‖∂j
x(η − q)(·, t)‖Cb(R) + ‖∂j

x(v − w)(·, t)‖Cb(R) ≤ Cε2t.

Remark 3.3. This result shows that, under the stated restrictions on the initial data for
(1.1), solutions of (1.1) and (1.4) agree with each other to an accuracy equaling the size of the
terms which were ignored in deriving (1.1) as model equations from the Euler equations. The
comparison is shown to hold on a time scale of order 1/ε, which is long enough for nonlinear
and dispersive effects to have an order-one influence on the wave form.

The proof of Theorem 3.1 is conveniently made by a slightly indirect argument. Indeed,
thus far we have focused on the BBM equation as a model for unidirectional surface waves
because it lends itself easily to the numerical investigations described below in Section 4.
However, one could equally well initiate this discussion using the KdV equation (1.5) as the
model for unidirectional surface waves. The two equations KdV and BBM are in fact formally
equivalent models in the Boussinesq regime, and, indeed, there is a similar type of comparison
result already available between their solutions. Here is the KdV version of Theorem 3.1.

Theorem 3.4. Let j ≥ 0 be an integer. Then for every K > 0, there exist constants C and
D such that the following is true. Suppose g ∈ Hj+5 with ‖g‖j+5 ≤ K. Let (η, v) be the
solution of the Boussinesq system (1.1), with initial data defined by (3.1), and let r be the
solution of the KdV equation (1.5) with initial data r(x, 0) = g(x). Define z by

(3.5) z = r − 1

4
εr2.

Then for all ε ∈ (0, 1], if

0 ≤ t ≤ T = Dε−1,

then

(3.6) ‖η(·, t)− r(·, t)‖j + ‖v(·, t)− z(·, t)‖j ≤ Cε2t.

Implicit in the statement of the preceding theorem is the assumption that KdV is well-
posed in Hs. Although the KdV well-posedness theory is somewhat more involved than that
of BBM, global well-posedness of KdV in Hs has been proved for values of s down to s = 0
and below. See for example [16, 20, 24].

Once Theorem 3.4 has been proved, the final ingredient in the proof of Theorem 3.1 is the
following result comparing solutions of (1.4) to those of (1.5).

Theorem 3.5. Let j ≥ 0 be an integer. Then for every K > 0 and every D > 0, there exists
a constant C > 0 such that the following is true. Suppose g ∈ Hj+5 with ‖g‖j+5 ≤ K. Let
q be the solution of the BBM equation (1.4) with initial data q(x, 0) = g(x) and let r be the
solution of the KdV equation (1.5) with the same initial data r(x, 0) = g(x). Then for all
ε ∈ (0, 1], if

0 ≤ t ≤ T = Dε−1,
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then

(3.7) ‖q(·, t)− r(·, t)‖j ≤ Cε2t.

Theorem 3.5 is taken from [14], where it is proved in a different form. For the reader’s
convenience we briefly sketch the proof of the present formulation in the Appendix.

Assuming that (3.6) and (3.7) hold on the requisite time scales, one immediately deduces
the estimate on ‖η − q‖j in (3.4) from the triangle inequality. The estimate on ‖v − w‖j

in (3.4) also follows easily from (3.6), (3.7), and the triangle inequality, once one takes into
account the definitions of w and z and the fact that uniform bounds are available on ‖r‖j (cf.
Theorem A2 below). Hence, to complete the proof of Theorem 3.1, it remains only to prove
Theorem 3.4. This is done below in Subsections 3.2 and 3.3.

We remark that it is also possible to prove a comparison result for (1.4) directly, with-
out first proving Theorem 3.4. (See [1] for details. The result proved there is slightly less
satisfactory and consequently we have preferred the present development.)

Theorems 3.1 and 3.4 are closely related to several recent results [11, 21, 26, 29, 30] on long-
wave approximations to solutions of the water-wave problem (1.3). In (1.3), let u(x, t) denote
the horizontal velocity of the fluid at the free surface, so that u(x, t) = φx(x, 1+ εη(x, t), t). If
η(x, t) and u(x, t) are known as functions of x for a given time t, then the velocity potential
φ(x, y, t) within the fluid domain can be found by solving a standard elliptic boundary-value
problem on the domain. Therefore the initial-value problem for the system (1.3) is equivalent
to an initial-value problem for the functions η(x, t) and u(x, t).

The problem of relating the behavior of solutions (η, u) of the initial-value problem for
(1.3) to general solutions of (1.5) on long time scales was first considered by Craig in [21].
Schneider and Wayne [26] improved Craig’s existence theory and established that a large
class of long-wave solutions of (1.3) are well approximated by combinations of solutions of an
uncoupled system of two KdV equations, one for disturbances moving to the left and one for
disturbances moving to the right. Bona, Colin and Lannes [11] and Wright [30] sharpened
and extended the results of [26]. For example, we have the following result from [11].

Theorem 3.6. Let j ≥ 0 be an integer. Then for every K > 0 and D > 0, there exist
constants C > 0 and ε0 > 0 such that the following is true. Suppose g(x) and h(x) are
functions satisfying ‖(1 + x2)g(x)‖J ≤ K and ‖(1 + x2)h(x)‖J ≤ K, where J is a sufficiently
large number depending only on j. Let α be the solution of

αt + αx +
3

4
εααx +

1

6
αxxx = 0

with initial data α(x, 0) = h(x) + g(x), and let β be the solution of

βt − βx +
3

4
εββx +

1

6
βxxx = 0

with initial data β(x, 0) = h(x)− g(x). Let ε ∈ (0, ε0] be given, and let T = Dε−1. Then there
exists a unique solution (η̃, ũ) to (1.3) in C(0, T ; Hj×Hj−1/2) with initial data η̃(x, 0) = g(x)
and ũ(x, 0) = h(x). Moreover, for all t ∈ [0, T ],

(3.8) ‖η̃(·, t)− 1

2
(α(·, t) + β(·, t)) ‖j + ‖ũ(·, t)− 1

2
(α(·, t)− β(·, t)) ‖j ≤ Cε2t.
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In particular, if g(x) = h(x), then we have

(3.9) ‖η̃(·, t)− r(·, t)‖j + ‖ũ(·, t)− r(·, t)‖j ≤ Cε2t

for all t ∈ [0, T ], where r is the solution of (1.5) with initial data r(x, 0) = g(x).

Proof. The general case of the theorem is a restatement of Theorem 5.1(i′) of [11]. The
particular case when g(x) = h(x) follows as an immediate consequence, since then β = 0 and
r = f/2. ¤
Remark 3.7. A comparison result similar to the above also follows from Theorem 1.3 and
Corollary 1.5 of Schneider and Wayne [26] (but note that (1.11) in [26] contains a misprint:
both the coefficients with value 3/4 should be emended to 3/2). Indeed, a perusal of p. 1492
of their argument shows that they prove an estimate which is somewhat stronger than the
one they state, and which in our variables reads

(3.10) ‖η̃(·, t)− 1

2
(α(·, t) + β(·, t)) ‖

C
j−3/2
b

+ ‖ũ(·, t)− 1

2
(α(·, t)− β(·, t)) ‖

C
j−3/2
b

≤ Cε3/4.

More recently, Wright [29, 30] has improved Schneider and Wayne’s result by establishing
a system of model equations for long-wave solutions of (1.3) which is accurate to order ε2.
(System (1.1) and equations (1.4) and (1.5) are, by contrast, only accurate to order ε.) It
follows from Corollary 2 of [29] that the power ε3/4 in (3.10) can be increased to ε1. This
estimate coincides with (3.8) at t = Dε−1 but is weaker for smaller values of t. Both Wright’s
estimate and (3.8) are sharp in the sense that the powers of ε involved cannot be increased.

The theory of [11] goes beyond the approximation of (1.3) by KdV-type equations to include
approximations by a variety of Boussinesq-type systems as well. As a particular consequence
we obtain the following theorem.

Theorem 3.8. Let j ≥ 0 be an integer. Then for every K > 0 and D > 0, there exist
constants C > 0 and ε0 > 0 such that the following is true. Suppose g(x) and h(x) are
functions satisfying ‖(1 + x2)g(x)‖J ≤ K and ‖(1 + x2)h(x)‖J ≤ K, where J is a sufficiently
large number depending only on j. Let ε ∈ (0, ε0] be given, and let T = Dε−1. Then there
exists a unique solution (η, v) of the Boussinesq system (1.1) in HJ

T × HJ
T with initial data

given by η(x, 0) = g(x) and v(x, 0) = (1 − ε
6
∂2

x)
−1h(x). Moreover, if (η̃, ũ), α, β, and r are

as defined in Theorem 3.6, then for all t ∈ [0, T ] we have

(3.11) ‖η̃(·, t)− η(·, t)‖j + ‖ũ(·, t)− (1− ε

6
∂2

x)v(·, t)‖j ≤ Cε2t,

(3.12) ‖η(·, t)− 1

2
(α(·, t) + β(·, t)) ‖j + ‖v(·, t)− 1

2
(1− ε

6
∂2

x)
−1 (α(·, t)− β(·, t)) ‖j ≤ Cε2t,

and (in case g(x) = h(x))

(3.13) ‖η(·, t)− r(·, t)‖j + ‖v(·, t)− (1− ε

6
∂2

x)
−1r(·, t)‖j ≤ Cε2t.

Proof. By Theorem 2.1, a solution (η, v) of (1.1) with the given initial data exists inHJ
T1
×HJ

T1

for some T1 > 0. Now if J is sufficiently large, then by Corollary 3.2 of [11],

(3.14) ‖η − ηapp‖j+2 + ‖v − (1− ε

6
∂2

x)
−1vapp‖j+2 ≤ Cε2t
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for all t ∈ [0, T1], where (ηapp, vapp) is as defined in (3.9) of [11]. (To correct a minor error in
Corollary 3.2 of [11], one should replace the factor (1 + ε

2
η0) by (1 − ε

2
η0)

−1. Note that this
change does not affect the validity of the proof given there, since this same modification can
be made in the statement and proof of Proposition 2.2 of [11].) Also, by Theorem 3.2 of [11]

(3.15) ‖η̃ − ηapp‖j + ‖ũ− vapp‖j ≤ Cε2t

for all t ∈ [0, T1]. Since (1 − ε
6
∂2

x) is a bounded operator from Hj+2 to Hj, it follows from
(3.14) and (3.15) that

‖η̃ − η‖j + ‖ũ− (1− ε

6
∂2

x)v‖j ≤ Cε2t

for all t ∈ [0, T1]. Since this estimate establishes an L2 bound on (v, η), it follows from
Theorem 2.1 that T1 can be taken equal to T . This completes the proof of (3.11). Estimates
(3.12) and (3.13) then follow immediately from (3.8), (3.9), and the triangle inequality. ¤
Remark 3.9. It is easy to see that an argument similar to that made in proving Theorem
3.5 shows that in the estimate (3.13), the function (1 − ε

6
∂2

x)
−1r(·, t) can be replaced by

r1(·, t), where r1 is defined as the solution of (1.5) with initial data r1(x, 0) = (1− ε
6
∂2

x)
−1g(x).

Similarly, in (3.6) the function z(·, t) can be replaced by r2(·, t), where r2 is defined as the
solution of (1.5) with initial data r2(x, 0) = g(x)− 1

4
εg(x)2. Thus (3.6) and (3.13) both provide

comparison results between solutions (η, v) of (1.1) and pairs of solutions of the KdV equation
(1.5). (The discrepancy between r1 and r2 is due, of course, to the fact that h(x) = g(x)
in (3.13) while h(x) = g(x) − 1

4
εg(x)2 in (3.6).) An advantage of (3.13) is that the estimate

is valid on a time scale of length D/ε, where D can be taken arbitrarily large (provided, of
course, that ε is sufficiently small). On the other hand, (3.6) has the advantage of requiring
a weaker assumption on the spatial decay of the initial data.

We now turn to the proof of Theorem 3.4, which will be accomplished in two stages. In
Subsection 3.2, the proof of Theorem 3.4 is considered in the case j = 0. The detailed analysis
of this case points the way to the general case. Moreover, the general case, established in
Subsection 3.3, is made by an induction argument wherein the result for j = 0 is the starting
point.

3.2. Proof of Theorem 3.4 in the case j = 0

One easily verifies that r and z satisfy the equations

rt + zx + ε(rz)x − 1

6
εrxxt = −ε2G1,

zt + rx + εzzx − 1

6
εzxxt = −ε2G2 − ε3G3,

where

G1 =
3

4
r2rx − 1

4
(rrx)xx − 1

36
rxxxxx,

G2 = − 1

12
rrxxx − 1

24
(r2)xxt,

G3 = −1

8
r3rx.
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Interest naturally focuses upon the differences

m = η − r and n = v − z

which satisfy the equations

mt + nx + ε(mn)x + ε(rn)x + ε(zm)x − 1

6
εmxxt = ε2G1,

nt + mx + ε(nnx) + ε(zn)x − 1

6
εnxxt = ε2G2 + ε3G3.

(3.16)

and have initial values m(x, 0) ≡ n(x, 0) ≡ 0.
Multiply the first equation in (3.16) by m and the second by n, add the results, and then

integrate over R× [0, t]. After suitable integrations by parts, there appears the formula

1

2

∫ ∞

−∞

[
m2 + n2 +

1

6
εm2

x +
1

6
εn2

x

]
dx

=− ε

∫ t

0

∫ ∞

−∞

(
m(mn)x + m(rn)x + m(zm)x + n2nx + n(zn)x

)
dx dτ

+ ε2

∫ t

0

∫ ∞

−∞
(mG1 + nG2) dx dτ + ε3

∫ t

0

∫ ∞

−∞
nG3 dx dτ.

(3.17)

The idea is to derive from (3.17) a differential inequality that will imply the desired result
via a Gronwall-type lemma. The argument put forward below for accomplishing this requires
ε-independent bounds on r and its derivatives, as furnished by the following Lemma.

Lemma 3.10. Let s ≥ 1 be an integer. Then for every K > 0, there exists C > 0 such that
the following is true. Suppose g ∈ Hs with ‖g‖s ≤ K, and let r be the solution of the KdV
equation (1.5) with initial data r(x, 0) = g(x). Then for all ε ∈ (0, 1] and all t ≥ 0,

‖r‖s ≤ C.

Also, for every integer k such that 1 ≤ 3k ≤ s, one may further assert that

‖∂k
t r‖s−3k ≤ C.

This familiar result is a consequence of the existence of infinitely many conservation laws for
KdV, together with the arguments put forward in [16]. Details are provided in the Appendix
so this side issue does not distract from the main line of argument.

We remark that it follows immediately from Lemma 3.10 and (3.5) that r, z and their
derivatives with respect to x up to order 5 are bounded in L2 norm by constants which
depend only on K, and which in particular are independent of t and ε. In what follows, we
will use this fact without further comment, denoting all occurrences of such constants by C.

Define the quantity A(t) to be the square root of the integral on the left-hand side of (3.17);
viz.,

A2(t) =

∫ ∞

−∞

[
m2 + n2 +

1

6
εm2

x +
1

6
εn2

x

]
dx.

From this definition it is obvious that for all t, we have

‖m‖L2 ≤ A(t) and ‖mx‖L2 ≤ Cε−
1
2 A(t).
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Because of the elementary estimate

‖m‖2
L∞ ≤ ‖m‖L2‖mx‖L2 ,

it then follows also that

‖m‖L∞ ≤ Cε−
1
4 A(t).

Of course, the same estimates hold for n.
Now rewrite (3.17) as

(3.18)
1

2
A2(t) = I1 + I2 + I3 + I4,

where

I1 = −ε

∫ t

0

∫ ∞

−∞
m(mn)x dx dτ = ε

∫ t

0

∫ ∞

−∞
nmmx dx dτ,

I2 = −ε

∫ t

0

∫ ∞

−∞
m(rn)x dx dτ = ε

∫ t

0

∫ ∞

−∞
rnmx dx dτ ,

I3 = −ε

∫ t

0

∫ ∞

−∞
[m(zm)x + n(zn)x] dx dτ

= − ε

2

∫ t

0

∫ ∞

−∞
zx(m

2 + n2) dx dτ,

I4 = ε2

∫ t

0

∫ ∞

−∞
(mG1 + nG2) dx dτ + ε3

∫ t

0

∫ ∞

−∞
nG3 dx dτ.

Three of these quantities may be easily estimated as follows:

(3.19) I1 ≤ ε

∫ t

0

‖n‖L∞‖m‖L2‖mx‖L2 dτ ≤ Cε
1
4

∫ t

0

A3(τ) dτ,

I3 ≤ Cε

∫ t

0

A2(τ)dτ,

and

I4 ≤ Cε2

∫ t

0

A(τ) dτ + Cε3

∫ t

0

A(τ) dτ.

It remains to estimate I2. This apparently simple task is complicated by the requirement of
not losing a factor of ε

1
2 , as this would lead to an inferior result to that stated in the theorem.

Indeed, if one were to make the obvious estimate

(3.20) I2 ≤ Cε
1
2

∫ t

0

A2(τ) dτ,

the best one could then do using Gronwall’s inequality would be to establish a close compar-
ison on a time interval of order ε−

1
2 , rather than on the desired interval of order ε−1. Here

instead of (3.20) we will use the considerably less straightforward estimate

(3.21) I2 ≤ CεA2(t) + C

∫ t

0

[
ε3A(τ) + εA2(τ) + ε

5
4 A3(τ)

]
dτ.
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To prove (3.21), we begin by multiplying the second equation in (3.16) by rn and integrating
over R× [0, t] to obtain

∫ t

0

∫ ∞

−∞
rnmx dx dτ = K1 + K2 + K3 + K4 + K5,

where

K1 = −
∫ t

0

∫ ∞

−∞
rnnt dx dτ, K2 = −ε

∫ t

0

∫ ∞

−∞
rn2nx dx dτ,

K3 = −ε

∫ t

0

∫ ∞

−∞
rn(zn)x dx dτ, K4 =

1

6
ε

∫ t

0

∫ ∞

−∞
rnnxxt dx dτ,

K5 = ε2

∫ t

0

∫ ∞

−∞
(G2rn + εG3rn) dx dτ.

To estimate K1, integrate by parts with respect to t and use the fact that n(x, 0) ≡ 0 to
derive

K1 =
1

2

∫ t

0

∫ ∞

−∞
rtn

2 dx dτ − 1

2

∫ ∞

−∞
r(x, t)n2(x, t) dx.

In consequence, one has that

(3.22) |K1| ≤ C

∫ t

0

A2(τ) dτ + CA2(t).

For K2, one has that

(3.23) |K2| ≤ Cε

∫ t

0

‖n‖L∞‖n‖L2‖nx‖L2 dτ ≤ Cε
1
4

∫ t

0

A3(τ) dτ.

The third integral, K3, may be rewritten as

K3 =
ε

2

∫ t

0

∫ ∞

−∞
(rxz − rzx)n

2 dx dτ,

whence one obtains

(3.24) |K3| ≤ Cε

∫ t

0

A2(τ) dτ.

The estimate for K5 is also straightforward, viz.,

(3.25) |K5| ≤ Cε2

∫ t

0

‖n‖L2 dτ ≤ Cε2

∫ t

0

A(τ) dτ.

The fourth integral K4 is bounded by a more complicated argument. Start by writing

K4 = −1

6
ε

∫ t

0

∫ ∞

−∞
(rn)xnxt dx dτ

= −1

6
ε

∫ t

0

∫ ∞

−∞
rnxnxt dx dτ − 1

6
ε

∫ t

0

∫ ∞

−∞
rxnnxt dx dτ

= K41 + K42,
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say. Using again the fact that n vanishes at t = 0, we have

K41 = −1

6
ε

∫ t

0

∫ ∞

−∞

1

2
r(n2

x)t dx dτ

= − 1

12
ε

∫ ∞

−∞
r(x, t)n2

x(x, t) dx +
1

12
ε

∫ t

0

∫ ∞

−∞
rtn

2
x dx dτ,

and it follows directly that

(3.26) |K41| ≤ CA2(t) + C

∫ t

0

A2(τ) dτ.

For K42, integrate by parts in x to get

K42 =
1

6
ε

∫ t

0

∫ ∞

−∞
rxxnnt dx dτ +

1

6
ε

∫ t

0

∫ ∞

−∞
rxnxnt dx dτ = K421 + K422.

Now for K421, integrate by parts with respect to t as for K1 to reach the inequality

(3.27) |K421| ≤ Cε
3
4 A2(t) + Cε

∫ t

0

A2(τ) dτ.

(In obtaining (3.27), one uses Lemma 3.10 to obtain a bound for ‖rxxt‖ which depends only
on K.)

To obtain an effective bound on K422, write the second equation in (3.16) in the form

(3.28) nt = Kε ∗ (m +
ε

2
n2 + εzn)−Mε ∗ (ε2G2 + ε3G3).

This formulation is obtained just as for the differential-integral equations (2.1) by first in-
verting (1 − ε

6
∂2

x) and then integrating the terms involving mx, εnnx and ε(zn)x by parts.
Using the form (3.28) for nt in K422 and applying the elementary inequalities in Lemma 2.3
connected to convolution with Kε and Mε, we derive that

|K422| ≤ Cε

∫ t

0

‖nx‖L2‖nt‖L2 dτ

≤ Cε

∫ t

0

‖nx‖L2

[
ε−

1
2‖m +

ε

2
n2 + εzn‖L2 + ε2‖G2‖L2 + ε3‖G3‖L2

]
dτ

≤ C

∫ t

0

[
ε

5
2 A(τ) + A2(τ) + εA3(τ)

]
dτ.

(3.29)

Adding the inequalities (3.26), (3.27), and (3.29) leads to the bound

(3.30) |K4| ≤ CA2(t) + C

∫ t

0

[
ε

5
2 A(τ) + A2(τ) + εA3(τ)

]
dτ.

Finally, putting together the estimates (3.22) for K1, (3.23) for K2, (3.24) for K3, (3.25)
for K5, and (3.30) for K4, there obtains the desired inequality (3.21).
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Now combining (3.21) with the estimates for I1, I3 and I4 obtained above, we deduce from
(3.18) that for all positive ε small enough, say ε ∈ (0, ε1),

(3.31) A2(t) ≤ C

∫ t

0

[
ε2A(τ) + εA2(τ) + ε

1
4 A3(τ)

]
dτ.

Of course, once ε1 is fixed, then it is easy to prove that (3.31) holds as well (with a possibly
larger value of C) for all ε ≥ ε1, since (3.20) implies that

I2 ≤ C√
ε1

ε

∫ t

0

A2(τ) dτ

whenever ε ≥ ε1.
From (3.31) and Young’s inequality, it follows that

(3.32) A2(t) ≤ C

∫ t

0

[ε2A(τ) + A3(τ)] dτ.

The following Gronwall-type lemma now comes to our aid. The proof is standard (see, e.g.,
[2], Lemma 2).

Lemma 3.11. Let α > 0, β > 0 and ρ > 1 be given. Define

T = β−
1
ρ α

1−ρ
ρ

∫ ∞

0

(1 + xρ)−1 dx.

Then there exists a constant M = M(ρ) > 0, which is independent of α and β, such that
for any T1 ∈ [0, T ], if A(t) is a non-negative, continuous function defined on [0, T1] satisfying
A(0) = 0 and

A2(t) ≤
∫ t

0

[αA(τ) + βAρ+1(τ)] dτ

for all t ∈ [0, T1], then

A(t) ≤ Mαt

for all t ∈ [0, T1].

Applying Lemma 3.11 to (3.32) with α = Cε2, β = C, and ρ = 2, we obtain that

A(t) ≤ Cε2t

for all t ∈ [0, Dε−1], where D, like C, is a constant depending only on K. This in turn implies
that

(3.33) ‖η(·, t)− r(·, t)‖L2 + ‖v(·, t)− z(·, t)‖L2 ≤ Cε2t,

at least for 0 ≤ t ≤ Dε−1, which is the advertised result when j = 0.
The preceding inequalities were all predicated on the existence of the solution pair (η, v)

of the Boussinesq system with initial data as in (3.1) based on g. The local existence theory
in Section 2 guarantees that there is such a solution at least over some positive time interval.
Moreover, as long as the L2 norms ‖η(·, t)‖L2 and ‖v(·, t)‖L2 remain bounded, the solution
continues to persist at whatever level of regularity is afforded by the initial data, according
to Theorem 2.1.
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Suppose now that g ∈ H5. According to the above calculations, it is known that (3.33)
holds at least for 0 ≤ t < T = min(T0, D/ε), where T0 is the maximum existence time for
the solution (η, v) of (1.1) with initial data as in (3.1). On the other hand, as long as (3.33)
holds, the triangle inequality implies that

‖η‖L2 ≤ ‖η − r‖L2 + ‖r‖L2 ,

‖v‖L2 ≤ ‖v − z‖L2 + ‖z‖L2 .

Thus Lemma 3.3 and (3.33) combine to yield L2 bounds on η and v. This in turn implies
that T0 ≥ D/ε. The proof of Theorem 3.4 in the case j = 0 is now complete.

3.3. Proof of Theorem 3.1 in case j ≥ 1

In this subsection, consideration is given to comparison of (r, z) and (η, v) in the Sobolev
spaces Hj, j ≥ 1. The argument is made by induction on j, the case j = 0 being in hand.

Define the quantity Aj(t) to be the natural generalization of the function A that appeared
in Subsection 3.1, namely,

A2
j(t) =

∫ ∞

−∞

j∑

k=0

[
m2

(k) + n2
(k) +

1

6
εm2

(k+1) +
1

6
εn2

(k+1)

]
dx,

where for any integer l ≥ 0, m(l) denotes ∂lm
∂xl and similarly for n(l). The aim is to prove that

there exist Cj and Dj such that if t ∈ [0, Djε
−1] then

Aj(t) ≤ Cjε
2t.

In the previous subsection, this was proved to be true for j = 0. Fix j ≥ 1 and assume the
result has been proved for j − 1. We attempt to show that it holds for j.

Taking the jth derivative of equations (3.16) with respect to x yields

∂tm(j) + n(j+1) + ε(mn)(j+1)

+ ε(rn)(j+1) + ε(zm)(j+1) − 1

6
ε∂tm(j+2) = ε2(G1)(j)

(3.34)

and

∂tn(j) + m(j+1) + ε(nnx)(j)

+ ε(zn)(j+1) − 1

6
ε∂tn(j+2) = ε2(G2)(j) + ε3(G3)(j).

(3.35)

(Note that according to Theorem 2.1, η and v, and hence also m and n, exist and remain in
Hj+5 at least for t ∈ [0, Dj−1ε

−1], so the manipulations here are justified.) Multiply (3.34)
by m(j) and (3.35) by n(j), add the results, and integrate over R× [0, t] to reach the relation

1

2

∫ ∞

−∞

[
m2

(j) + n2
(j) +

1

6
εm2

(j+1) +
1

6
ε n2

(j+1)

]
dx = I1 + I2 + I3 + I4,
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where

I1 = −ε

∫ t

0

∫ ∞

−∞

[
(mn)(j+1)m(j) + (nnx)(j)n(j)

]
dx dτ,

I2 = −ε

∫ t

0

∫ ∞

−∞
(rn)(j+1)m(j) dx dτ,

I3 = −ε

∫ t

0

∫ ∞

−∞

[
(zm)(j+1)m(j) + (zn)(j+1)n(j)

]
dx dτ,

I4 = ε2

∫ t

0

∫ ∞

−∞

[
(G1)(j)m(j) + (G2)(j)n(j)

]
dx dτ

+ ε3

∫ t

0

∫ ∞

−∞
(G3)(j)n(j) dx dτ.

Our aim is to obtain estimates for I1 through I4 in terms of constants C which depend only
on ‖g‖j+5, and hence only on K. (In what follows, we continue to denote all such constants
by C.) Because of the induction hypothesis, it is known that there exist constants Cj−1 > 0
and Dj−1 > 0, depending only on ‖g‖j+4, such that

‖m‖j−1 + ‖n‖j−1 = ‖η − r‖j−1 + ‖v − z‖j−1 ≤ Cj−1ε
2t

holds for all t ∈ [0, Dj−1ε
−1]. In particular,

‖m‖j−1 + ‖n‖j−1 ≤ Cj−1Dj−1ε

for all t ∈ [0, Dj−1ε
−1]. It follows immediately that ‖m‖j−1 ≤ C and ‖n‖j−1 ≤ C. These

estimates will be used repeatedly in the induction step.
The integrand in I1 can be expanded into a sum of terms of the form m(k)m(i)n(l) and

n(k)n(i)n(l), in which each of k, i, and l is less than or equal to j + 1, but no two can both
equal j + 1 in any term. Therefore, arguing as in establishing (3.19), it is concluded that

(3.36) |I1| ≤ Cε
1
4

∫ t

0

A3
j(τ) dτ.

To estimate I4, use Hölder’s inequality to obtain

|I4| ≤ Cε2

∫ t

0

Aj(τ) dτ.
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The term I3 can be analyzed by writing

I3 =− ε

∫ t

0

∫ ∞

−∞

[
z(m(j+1)m(j) + n(j+1)n(j))

+

j+1∑

k=1

(
j + 1

k

)
z(k)(m(j+1−k)m(j) + n(j+1−k)n(j))

]
dx dτ

=
1

2
ε

∫ t

0

∫ ∞

−∞

[
(m2

(j) + n2
(j))zx dx dτ

− ε

∫ t

0

∫ ∞

−∞

j+1∑

k=1

(
j + 1

k

)
z(k)(m(j+1−k)m(j) + n(j+1−k)n(j)) dx dτ,

from which it is obvious that

|I3| ≤ Cε

∫ t

0

A2
j(τ) dτ.

It remains to estimate I2. Multiplying equation (3.35) by rn(j) and integrating over R×[0, t],
it transpires that

(3.37)

∫ t

0

∫ ∞

−∞
rn(j)m(j+1) dx dτ = K1 + K2 + K3 + K4 + K5,

where

K1 = −
∫ t

0

∫ ∞

−∞
rn(j)∂tn(j) dx dτ,

K2 = −ε

∫ t

0

∫ ∞

−∞
rn(j)(nnx)(j) dx dτ,

K3 = −ε

∫ t

0

∫ ∞

−∞
rn(j)(zn)(j+1) dx dτ,

K4 =
1

6
ε

∫ t

0

∫ ∞

−∞
rn(j)∂tn(j+2) dx dτ,

K5 = ε2

∫ t

0

∫ ∞

−∞
rn(j)

(
(G2)(j) + ε(G3)(j)

)
dx dτ.

The integral I2 may be written as

I2 = ε

∫ t

0

∫ ∞

−∞
(rn)(j)m(j+1) dx dτ = ε

∫ t

0

∫ ∞

−∞
rn(j)m(j+1) dx dτ

+ ε

∫ t

0

∫ ∞

−∞

j∑

k=1

(
j
k

)
r(k)n(j−k)m(j+1) dx dτ ,

and the last term on the right-hand side is easily seen to be bounded by

Cε

∫ t

0

A2
j(τ) dτ,
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so the key to estimating I2 is to obtain a bound for the integral in (3.37).
We begin estimating the summands K1 through K5 in (3.37). First, note that the same

argument used to obtain (3.22) gives here

|K1| ≤ CA2
j(t) + C

∫ t

0

A2
j(τ) dτ,

and the same argument used to obtain (3.36) gives

|K2| ≤ Cε
1
2

∫ t

0

A3
j(τ) dτ.

Similarly, obvious estimates yield

|K3| ≤ Cε
1
2

∫ t

0

A2
j(τ) dτ

and

|K5| ≤ Cε2

∫ t

0

Aj(τ) dτ.

Attention is now turned to K4. Integrating by parts leads to

K4 = −1

6
ε

∫ t

0

∫ ∞

−∞

[
rn(j+1)∂tn(j+1) + rxn(j)∂tn(j+1)

]
dx dτ

= K41 + K42.

The integral K41 can be handled in the same way as K1, to reach the estimate

|K41| ≤ CA2
j(t) + C

∫ t

0

A2
j(τ) dτ.

The quantity K42 may also be handled in a way that is by now familiar: write

K42 =
1

6
ε

∫ t

0

∫ ∞

−∞

[
rxxn(j)∂tn(j) + rxn(j+1)∂tn(j)

]
dx dτ

= K421 + K422,

and follow the same procedure presented earlier for obtaining the estimates (3.27) and (3.29),
using (3.35) to replace the term ∂tn(j) in K422. As a result, there obtains the estimate

|K4| ≤ CA2
j(t) + C

∫ t

0

[
ε

5
2 Aj(τ) + A2

j(τ) + εA3
jτ

]
dτ,

as in (3.30).
Combining the inequalities for K1 through K5 implies

|K| ≤ CA2
j(t) + C

∫ t

0

[
ε2Aj(τ) + A2

j(τ) + ε
1
4 A3

j(τ)
]

dτ,

from which it follows that

|I2| ≤ CεA2
j(t) + C

∫ t

0

[
ε3Aj(τ) + εA2

j(τ) + ε
5
4 A3

j(τ)
]

dτ.
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Finally, putting together the estimates for I1 through I4, the analogue of (3.31) appears,
namely

A2
j(t) ≤ C

∫ t

0

[
ε2Aj(τ) + εA2

j(τ) + ε
1
4 A3

j(τ)
]

dτ.

This inequality, valid for 0 ≤ t ≤ Dj−1ε
−1, taken together with Lemma 3.11, allows the

conclusion that there are constants Cj and Dj depending only on ‖g‖j+5 such that

Aj(t) ≤ Cjε
2t for 0 ≤ t ≤ Djε

−1.

Thus, the proof of Theorem 3.4 is complete.

4. Numerical Results

The theoretical results established in Section 3 are augmented by a numerical study re-
ported in the present section. There are several issues of both theoretical and practical
importance that are especially illuminated by numerical simulations. First, one would like an
idea of how large are the various constants that depend upon norms of the initial data ‖g‖.
They are independent of ε for ε ∈ (0, 1], but if, for example, the constant C in Theorem 3.1
is some enormous multiple of the norm of the initial data or the constant D is a very small
number, then the result has correspondingly less value. Next, it is to be expected that if
only small values of ε are considered, then the values of the constants can be improved, and
presumably take on an asymptotic best value as ε approaches zero. An important question
then is to understand just how small must ε be in order for the constants to approximate
well their asymptotic values. A related question is whether the comparison estimate (3.4) is
sharp in the sense that ε2 is the highest power of ε that can appear there. Finally, one might
ask whether the time interval of comparison in (3.3) can be extended to a longer interval,
such as [0, ε−2]. Since our analytical approach casts little light on these detailed points, we
have resorted to a series of numerical experiments designed to elucidate the issues.

The numerical algorithm used is based on the integral equation formulation (2.2) of (1.1)
and a similar formulation of (1.4) (see [3]). The details of the numerical procedure are
presented in [8] for (1.1) and [15] for (1.4). While there is no reason to report the details
again here, it is worth remarking that these numerical schemes are proved to be fourth-order
accurate in space and in time, to be unconditionally stable, and to have the optimal order of
efficiency, namely the number of operations required for each time step is O(N), where N is
the number of spatial mesh points.

In the present implementation of the algorithms, the solutions are approximated numeri-
cally on the spatial domain 0 ≤ x ≤ L with uniform mesh size, taken to be ∆x = 1

64

√
ε. The

spatial mesh points are thus given by xi = i∆x for i = 0, 1, 2, . . . , N , where N = L
∆x

. The
time step ∆t is taken equal to ∆x. (Making ∆x and ∆t proportional to

√
ε renders them

independent of ε in the original physical variables.) The length L of the spatial domain is
chosen to be large enough that, for initial data representing a disturbance located far enough
from the endpoints x = 0 and x = L, the boundary data at the endpoints (or, in the case
of Experiment 4 below, at the right endpoint) can be safely taken equal to zero on the time
interval under consideration. Typically, L = 360

√
ε.
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We now present and discuss the results of the numerical experiments. The first experiment,
concerned with solitary waves, serves as a test of our coding in addition to continuing the
conversation about the relation between (1.1) and (1.4).

Experiment 1: Solitary waves
In this experiment, an exact travelling-wave solution to (1.4) is compared with the corre-

sponding solution of the initial-value problem for (1.1) as in Theorem (3.1). The initial data
for (1.4) is taken to be

qε(x, 0) ≡ gε(x) = sech2

(
1

2

√
3

1 + ε/2
(x− x0)

)
.

The solution of the BBM equation corresponding to this initial data is the exact travelling
wave solution qε(x, t) = gε(x− kt), where k = 1 + ε/2 is the phase speed. Following (3.1), we
seek a solution (ηε, vε) of (1.1) with initial data ηε(x, 0) = gε(x) and vε(x, 0) = gε(x)− 1

4
εgε(x)2.

An example of the results is shown in Figure 1(a), where the surface profile ηε(x, t) is
plotted with ε = 0.4 and x0 = 19. The solution is very nearly a travelling wave, like the
solution qε(x, t) of (1.4), as was to be expected from the comparison result. It does have,
however, a small dispersive tail.

According to Theorem 3.1, the solution (ηε, vε) should closely resemble (qε, wε), where
wε(x, t) = qε(x, t)− 1

4
εqε(x, t)2. For purposes of comparison, the quantities

Ep(ε, t) =
|ηε(·, t)− qε(·, t)|p

|qε(·, t)|p and Ẽp(ε, t) =
|vε(·, t)− wε(·, t)|p

|wε(·, t)|p
were computed, where | · |p denotes a discrete approximation to the Lp norm on [0, L]. More

precisely, for 1 ≤ p < ∞, |f |p denotes the approximation to
(∫ L

0
|f |p dx

)1/p

obtained by using

Simpson’s rule with grid points {xi}, and for p = ∞, |f |p is defined by |f |∞ = supi |f(xi)|.
In Figure 1(b), Ep and Ẽp are plotted against time t for p = 2 and p = ∞, over the interval
0 ≤ t ≤ 50, again with ε = 0.4. The top two curves, drawn with dashed lines, are the plots of
E2 and Ẽ2; the plots of E∞ and Ẽ∞ are drawn with solid lines, and appear to be one curve
because they are almost identical. Figure 1(b) not only verifies that the relative differences
increase linearly with time t for t < Cε−1, as asserted in Theorem 3.1 and Corollary 3.2,
but also demonstrates that this linear estimate is valid for larger values of t. Similar results
are found in Experiments 2–4 below, indicating that the time interval appearing in (3.3) is
probably not the longest possible.

The solution profiles of (1.1) and (1.4) at t = 50 corresponding to the initial data described
above (with ε = 0.4 and x0 = 19) are plotted in Figure 2(a), which shows that ηε(x, 50) and
qε(x, 50) have a very similar shape. However, as one sees upon consulting Figure 1(b), the
relative difference between them, as measured by E∞, is almost 0.5. This is clearly due to
phase difference: the two equations propagate their respective travelling waves at noticeably
different speeds.

This leads one to imagine a comparison between solutions modulo a phase shift, or what
is often called the shape difference [15]. For a fixed t, the phase shift is determined by first
finding the mesh point xk where ηε(xk, t) takes its maximum value, and then using a quadratic
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Figure 1. (a) Surface profile ηε(x, t). (b) Relative differences between solu-
tions of (1.1) and (1.4).
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Figure 2. (a) A solution of (1.4) (solid line) and a corresponding solution of
(1.1) (dashed line) at t = 50. (b) Relative shape differences between solutions
of (1.4) and (1.1).

polynomial interpolating (xk, ηε(xk, t)) and the two neighboring points (xk−1, ηε(xk−1, t)) and
(xk+1, ηε(xk+1, t)) to determine the location of the maximum point of ηε(x, t); viz.,

x∗ =
(2xk −∆x)ηε(xk+1, t)− 4xkηε(xk, t) + (2xk + ∆x)ηε(xk−1, t)

2ηε(xk+1, t)− 4ηε(xk, t)− 2ηε(xk−1, t)
.

We then define ηs
ε (x, t) = ηε(x + x∗ − x0, t), and compute the “relative shape difference”

Es
p(ε, t) =

|ηs
ε (·, t)− gε(x)|p
|gε(x)|p

for p = 2 and p = ∞. Similarly, one can compute the relative difference

Ẽs
p(ε, t) =

|vs
ε (·, t)− vε(·, 0)|p
|vε(·, 0)|p



BOUSSINESQ AND BBM COMPARISONS 27

n 1 2 3 4 5 6 7 8
εn 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.025
x0 20 20 19 17 14 12 9 9
E∞ 0.79 0.64 0.47 0.29 0.14 0.041 0.012 0.0032

Ẽ∞ 0.79 0.64 0.47 0.29 0.14 0.041 0.012 0.0032
E2 0.98 0.78 0.56 0.34 0.17 0.046 0.0013 0.0034

Ẽ2 0.97 0.76 0.55 0.34 0.16 0.046 0.0013 0.0033
rate of E2 1.3 1.5 1.7 1.8 1.8 1.9 1.9 → 2

Table 1. The relative difference between solutions (ηε, vε) of (1.1) and (qε, wε)
of (1.4) at t = 50, and the rate of decrease of E2 with respect to ε.

n 1 2 3 4 5 6 7 8
εn 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.025
x0 20 20 19 17 14 12 9 9
Es
∞ 0.031 0.025 0.020 0.014 0.0092 0.0040 0.0017 0.00067

Ẽs
∞ 0.0015 0.0014 0.0012 0.0097 0.0071 0.0037 0.0017 0.00066

Es
2 0.0033 0.0028 0.0024 0.0019 0.0013 0.0061 0.0024 0.00085

Ẽ2
s 0.027 0.024 0.020 0.017 0.012 0.0058 0.0023 0.00084

rate of Es
2 0.83 0.82 0.83 0.90 1.1 1.3 1.5

Table 2. The relative difference between solutions (qε, wε) of (1.4) and
(ηs

ε (x, t), vs
ε (x, t)), which are the shifts of solutions (ηε, vε) of (1.1), at t = 50,

and the rate of decrease of Es
2 with respect to ε.

between a shifted profile vs(x, t) and the initial data vε(x, 0). The results for ε = 0.4 are
shown in Figure 2(b), where the dotted curves represent Es

2 and Ẽs
2, and the solid curves

represent Es
∞ and Ẽs

∞. The relative shape differences remain less than 0.025 for t up to 50.
Results of this experiment for other values of ε are summarized in Tables 1 and 2. To

maintain the accuracy, different values of x0 were used so that the solution at the boundary
would be consistently small over the entire temporal interval. The values of E∞, Ẽ∞, E2, and
Ẽ2 at t = 50 are listed in Table 1 for ε ranging from 0.025 to 0.6. The corresponding data on
shape differences are listed in Table 2.

From rows 4–7 in Tables 1 and 2, one notices that the comparisons made via the discrete
L∞ or L2 norms behave similarly. For either choice of norm, the relative error decreases as ε
decreases, and the rates of decrease are comparable. For the rest of the discussion, therefore,
we use as benchmarks the quantities E2(ε, t) and Es

2(ε, t).
Note that E2 is decreasing as ε decreases (see row 6 in Table 1). The rate of decrease,

computed by using the formula

rate(εn) =
log

(
E2(εn, t)/E2(εn+1, t)

)

log(εn/εn+1)
,
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is shown in row 8 of Table 1. The rate of decrease is also calculated for the shape difference
(see row 8 of Table 2). For relatively small ε, the overall difference is decreasing quadratically.
The shape difference is decreasing linearly with respect to ε for moderate ε. Using Richardson
extrapolation on data at ε = 0.4, 0.2, 0.1, 0.05 and 0.025, one finds that

E2(ε, 50) ≈ 5.8 ε2

as ε → 0. Therefore, the constant D2 in Theorem 3.1 for j = 0 seems to be small (about 0.12
in this example).

Comparing the data in Table 1 and Table 2, one finds that the shape difference Es
2(ε, t)

is much smaller than the difference E2(ε, t), especially for waves of moderate size. Using a
least squares approximation on data listed in row 6 of Table 2 at ε = 0.6, 0.5, . . . , 0.025, one
obtains

Es
2(ε, 50) ≈ 0.0494 ε.

From earlier studies (for example [13, 22]), it is known that the solitary-wave solutions
of the BBM equation play the same sort of distinguished role in the long-time asymptotics
of general disturbances that they do for the Korteweg-de Vries equation. The numerical
simulations in [8] show that a similar conclusion is warranted for (1.1) (and see also [25]).
Consequently, it is potentially telling that an individual solitary-wave solution of (1.4) is seen
to be very close (with Es

2 ≤ 0.04 for all amplitudes we have tried) to the solution of (1.1) when
the one-way velocity assumption (3.1) is imposed. Moreover, the structure of the solution of
(1.1), when initiated with the BBM solitary wave using (3.1), appears to be a solitary-wave
solution of (1.1) followed by a very small dispersive tail. Thus, the impact of the present
experiment could be much broader than appears at first sight.

Experiment 2: Waves with dispersive trains
In the first experiment, the initial profile g was chosen so that it generated an exact solution

of the BBM equation. However, this initial data had to depend on ε, albeit weakly. In the
next experiment, the initial data g is fixed, independently of ε. We choose for this case a g
that results in a lot of dispersion: namely, a profile of the form

(4.1) g(x) =

(
−2 + cosh

(
3

√
2

5
(x− x0)

))
sech4

(
3(x− x0)√

10

)
,

with two small crests separated by a deep trough. This profile, with x0 = 60, is displayed as
the top curve in Figure 3. The initial data for (1.1) is, as before, given by ηε(x, 0) = g(x) and
vε(x, 0) = g(x) − 1

4
εg2(x). Figure 3 shows the solution profile ηε(x, t) at t = 0, 10, 20, 30 and

40 with ε = 0.5. It is clear that the wave propagates to the right and also expands slowly to
the left, and decays in L∞ norm, leaving a considerable dispersive tail behind. The solution
profile qε(x, t) of (1.4) disperses similarly (see Figure 4).

Graphs of ηε(x, t) and qε(x, t) at t = 4.95, 25.5, 49.5 are shown in Figure 4. It is clear that
the two solutions are very close to each other. The relative differences E2 and Ẽ2 are plotted
in Figure 5 for ε = 0.5 and t between 0 and 50. The values of E2 and Ẽ2 increase relatively
rapidly, but linearly, to about 0.1 by t = 3, and then more slowly thereafter. These numerical
results not only verify the theoretical result |ηε− qε|L∞ ≤ Cε2t for t ≤ Dε−1, but also indicate
that the result may well continue to larger values of t.
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Figure 3. Solution of Boussinesq system with ε = 0.5.
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Figure 4. Comparison between solutions of BBM equation (solid line) and
Boussinesq system (dashed line) with ε = 0.5.
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Figure 5. Comparison between solutions of BBM equation and Boussinesq
system with ε = 0.5, where (a) plots E2(ε, t) and (b) plots Ẽ2(ε, t).

One sees clearly from Figure 4 that ηε and qε have a very similar shape for all values of t
shown, but that there are small but persistent phase shifts between ηε and qε that could lead
to a large value of E2(ε, t) (in fact E2(ε, t) is about 0.26 when t = 50). Data on the relative
difference E2(ε, t) and relative shape difference Ds

2(ε, t) between ηε and qε are listed in Tables
3 and 4. Here, because no exact solution is available for qε, the shape difference is calculated
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ε 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05
E2 0.728 0.547 0.392 0.262 0.162 0.09.4 0.0525 0.0210 0.0090

rate on E2 2.1 2.2 2.2 2.1 1.8 1.5 1.3 1.2
Ds

2 0.476 0.307 0.180 0.0943 0.0561 0.00400 0.00263 0.00126 0.0061
rate on Ds

2 3.3 3.5 3.5 2.3 1.2 1.0 1.1 1.1
Table 3. The relative difference and shape difference between solutions (ηε, vε)
of (1.1) and (qε, wε) of (1.4) at t = 50, with initial data (4.1) for BBM.

ε 0.5 0.4 0.3 0.2 0.1 0.05 0.025 0.0125
E2 0.043 0.033 0.024 0.014 0.0051 0.0018 0.00053 0.00015

rate on E2 1.2 1.1 1.3 1.5 1.5 1.7 1.9 → 2
Ds

2 0.0371 0.0303 0.0230 0.0139 0.00501 0.00173 0.00052 0.00014
rate on Ds

2 0.9 1.0 1.2 1.5 1.5 1.7 1.9
Table 4. The relative L2 difference and shape difference between solutions
ηε(x, t) of (1.1) and qε(x, t) of (1.4) at t = 1, with initial data (4.1) for BBM.

using a different approach than in Experiment 1. For α ∈ R and t fixed, define J(α) by

J(α) =

{∫ L

0

|η̄ε(x, t)− q̄ε(x− α, t)|2 dx

} 1
2

where η̄ε(x, t) and q̄ε(x, t) are the cubic spline interpolation functions through the points
η(xi, t) and q(xi, t). The shape difference Ds

2(ε, t) is obtained by finding the minimum value
of J(α). The Matlab program fminbnd is used in our computation.

Table 3 shows the dependence of E2(ε, t) and Ds
2(ε, t) on ε for t = 50. The rate of conver-

gence to 0 degrades as ε becomes smaller. Since this behavior does not match the expected
asymptotic behavior as ε → 0, we investigated further using values of ε below 0.05. The
results are shown in Table 4, where one eventually sees what looks like quadratic convergence
in ε. These calculations were done at t = 1 since the t-dependence of E2 for larger values of
t is shown in Figure 5 already.

In general, for moderate sized waves, corresponding to say ε ≤ 0.4, the shape difference
is small until t gets large. But for large ε and t, the shape difference can be large. (This
is in contrast to the situation in Experiment 1, where the shape difference remained small
even for large ε and t.) For example, for ε = 0.8 and at t = 50, the shape difference is
about 0.476. A study of the wave profiles reveals the reason for this. As ε gets larger, the
wave profile for positive time becomes more complex. There are several peaks with different
amplitudes in evidence, and each of these propagates at its own speed. As the speeds in the
BBM approximation are not quite the same as for the Boussinesq approximation, there is
a divergence because of phase differences, just as in Experiment 1. However, because there
is substantial energy in more than one wave amplitude, there are several phase differences
contributing substantially to the phase mismatch, and no single translation can compensate
for them all. To put the issue in simple terms, for given functions f1 and f2 one cannot in
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Figure 6. Solution of Boussinesq system with ε = 0.05.

general obtain a close fit to

f1(x + α1) + f2(x + α2),

where α1 and α2 are distinct, by using an approximation of the form

f1(x + α) + f2(x + α).

The solutions studied in Experiment 2 also differ from those of Experiment 1 in that their
structure changes when ε is changed. (In Experiment 1, solutions for all values of ε tried had
the same structure: namely, that of a solitary wave with a small dispersive tail.) The effects
of changing ε on the solutions in Experiment 2 may be seen, for example, by comparing the
solution for ε = 0.5, shown in Figure 3, to that shown in Figure 6, where ε has been reduced
to 0.05. In Figure 6, where ηε(x, t) is graphed against x for t = 0, 10, 20, 30, and 40, it is
clear that ηε(x, t) is mainly a right-moving wave. This is in agreement with the result one
gets by considering (1.1) to be a perturbation of the linear wave equations

ηt + vx = 0

vt + ηx = 0,

with initial conditions η(x, 0) = g and v(x, 0) = g. For this reduced system, the exact solution
is simply the right-moving wave

η(x, t) = g(x− t)

v(x, t) = g(x− t).

Comparisons between ηε(x, t) and qε(x, t) for ε = 0.05 at t = 16.8, 33.5, and 50.1 are plotted
in Figure 7. The difference between the two solutions is hardly visible. At t = 50, the relative
difference E2(0.05, 50) is only 0.009 (see Table 3).

As another check on our code, we monitored the variation of quantities that, for the con-

tinuous problem, are independent of time. The integrals I1(t) =
∫ L

0
ηε(x, t) dx, I2(t) =∫ L

0
vε(x, t) dx, F (t) =

∫ L

0
[ηεvε + (ε/6)(ηε)x(vε)x] dx and E(t) =

∫ L

0
[η2

ε + v2
ε (1 + εηε)] dx were

approximated using the trapezoidal rule. It was found that over the time interval [0, 50],
I1(t) was zero to within 5.9× 10−6, I2(t) stayed within 0.008% of −0.071, F (t) stayed within
0.02% of 0.43, and E(t) stayed within 0.000004% of 0.51. Further, all the computations
reported here and throughout Section 4 were checked for convergence by halving the spatial
and temporal grid lengths and comparing the resulting approximations.
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Figure 7. Comparison between solutions of BBM equation (solid line) and
Boussinesq system (dashed line) with ε = 0.05. The difference between the two
solutions is not visible.
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Figure 8. Solution of Boussinesq system.

Experiment 3: Solitary-wave interactions
In this experiment, attention is given to the situation wherein a large solitary wave overtakes

a smaller solitary wave. The initial data for the BBM equation is the superposition of two
exact solitary-wave profiles, namely,

qε(x, 0) = sech2

(
1

2

√
3

1 + 0.3
(x− 20)

)

+
1

6
sech2

(
1

2

√
0.5

1 + 0.05
(x− 54)

)
.

Numerical solution of the BBM equation with this type of initial data was carried out earlier
in [13]. It was found there that two solitary-wave solutions of the BBM equation do not
interact exactly (elastically), as they do in the case of the Korteweg-de Vries equation. From
the results of these earlier simulations, we know that it takes a fair amount of time for the
two solitary waves to fully interact. Therefore our numerical computation is carried out to
t = 234.

The surface profiles ηε(x, t) of the solutions of the Boussinesq system (1.1) with ε = 0.6
at t = 55, 117, 148, 192, and 234 are shown in Figure 8. Notice how closely these profiles
resemble those of a double-soliton solution of the Korteweg-de Vries equation. Just as in a
Korteweg-de Vries soliton interaction, first the large solitary wave overtakes the smaller one
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Figure 9. Comparison between solutions of BBM equation (solid line) and
Boussinesq system (dashed line)

on account of its larger phase speed, then the two waves interact nonlinearly, and finally both
emerge from the interaction having regained more or less their original shape and speed. This
close resemblance between solutions of (1.1) and the Kortweg-de Vries (or BBM) equation is
to be expected, for otherwise the validity of at least one of these models would be in jeopardy.
It should be noted, however, that theory still falls short of being able to prove that solutions
of (1.1) exhibit the behavior shown in Figure 8 (see [23] for recent work in this direction).

In Figure 9 are shown comparisons between the solutions of the BBM equation (1.4) and
the Boussinesq system (1.1), starting from the above initial data, at t = 79 and 199. The
phase speeds for Boussinesq solitary waves of a given amplitude are smaller than those of
the BBM equation. This is especially evident for waves of larger amplitude. At t = 199,
the phase difference for the large solitary wave has accumulated to the point where the two
renditions of it differ by more than one full wavelength.

Experiment 4: Initial-boundary-value problems
In the last experiment, we attempt a simulation that corresponds to waves generated by

a wavemaker in a wave tank or to regular, deep-water waves impinging upon a coast. An
idealized version of this situation is to pose (1.1) or (1.4) for (x, t) ∈ R+×R+ with zero initial
data and a sinusoidal boundary condition

qε(0, t) = sin(πt) tanh(5t),

which is plotted in Figure 10. The function tanh(5t) is used to ensure the compatibility of
initial data and the boundary data at the corner (x, t) = (0, 0). The left boundary condition
for the system (1.1) is taken to be ηε(0, t) = qε(0, t) and vε(0, t) = qε(0, t) − 1

4
εqε(0, t)

2, as in
(3.1).

The solutions of the Boussinesq system (solid line) and the BBM equation (dashed line)
are plotted in Figure 11 for ε = 0.2 and in Figure 12 for ε = 0.5. The two solutions have
a similar shape, but the waves predicted by the Boussinesq system are smaller and slower
than those predicted by the BBM equation. The difference between solutions decreases as ε
decreases.

We emphasize that no theory for comparison was developed here for such initial-boundary-
value problems, but theory for the individual boundary-value problems can be found in [4],
[5], [7], and [12]. Preliminary considerations show that such a theory is not necessarily out of
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Figure 11. Comparison with ε = 0.2.
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Figure 12. Comparison with ε = 0.5.

reach, but it is more complicated than our developments in Section 3 for comparing the pure
initial-value problems.

5. Conclusions

When one attempts to model long-crested waves entering the near-shore zone of a large
body of water, one naturally aims for the simplest description that is consistent with the ac-
curacy of the input data. On the other hand, most of our knowledge of just how well various
modelling approaches work derives from laboratory experiments. In both of these situations,
there are available standard unidirectional models such as (1.4) or its variable-coefficient ana-
logues which take account of variable undisturbed depth. These have been shown to predict
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pretty accurately within their formal range applicability in laboratory environments. There
are also available more complicated systems, like (1.1) or its variable-coefficient versions, that
can potentially take account of reflection. Our goal here, which had its origins in sediment
transport models arising in analyzing beach protection strategies, has been to understand a
precise sense in which the bidirectional model specializes to the unidirectional model. This
is a fundamental question, but the answer also helps with the formulation of input to the
bidirectional model in situations where we would normally have insufficient information with
which to initiate the equation. In particular, records of wave-amplitude incoming from deep
water are straightforward to use in initiating a unidirectional model like the BBM equation
(1.4). As becomes apparent from the analysis in Section 3, the same data can be used to initi-
ate the Boussinesq system (1.1), and with the same implied level of accuracy. The advantage
is that the Boussinesq system can countenance reflection whereas (1.1) cannot. Thus, (1.1)
can in principle be coupled to models for run-up and reflection in the very-near-shore zone.

In addition to presenting a qualitative theory connected with the comparison of the BBM
equation and the Boussinesq system, we have reported numerical experiments showing quan-
titative aspects of the relation between these two models. After performing convergence tests
and the like to generate confidence in our numerical scheme, we ran simulations with initial
data corresponding to solitary-wave interactions and to large-scale dispersion. The results
show clearly how well the Boussinesq system, with initial velocity as determined from the
initial amplitude by (3.2), is tracked by the simple initial-value problem for the BBM equa-
tion. Even more convincing are the boundary-value comparisons shown in Experiment 4. As
this is an important context where our ideas could come to the fore, the agreement here is
heartening.

Appendix

This appendix contains the proofs of Theorem 3.5 and Lemma 3.10. For the reader’s
convenience, the results are restated here as Theorems A1 and A2.

Theorem A1. Let j ≥ 0 be an integer. Then for every K > 0 and every D > 0, there
exists a constant C > 0 such that the following is true. Suppose g ∈ Hj+5 with ‖g‖j+5 ≤ K.
Let q be the solution of the BBM equation (1.4) with initial data q(x, 0) = g(x) and let r be
the solution of the KdV equation (1.5) with initial data r(x, 0) = g(x). Then for all ε ∈ (0, 1],
if

0 ≤ t ≤ T = Dε−1,

then

‖q(·, t)− r(·, t)‖j + ε‖q2(·, t)− r2(·, t)‖j ≤ Cε2t.

Proof. This theorem is essentially proved in [14], to which we refer the reader for details that
are omitted here. First consider the case j = 0, and let θ = q − r. Then θ satisfies the
equation

(A.1) θt + θx +
3

2
ε(rθ)x +

3

2
εθθx − 1

6
εθxxt = ε2G,



36 A. A. ALAZMAN, J. P. ALBERT, J. L. BONA, M. CHEN & J. WU

where G = − (
1
4
(rrx)xx + 1

36
rxxxxx

)
. Multiplying (A.1) by θ, integrating over R × [0, t], and

integrating by parts leads to

(A.2)

∫ ∞

−∞
(θ2 +

1

6
εθ2

x) dx =
3

2
ε

∫ t

0

rxθ
2 dx dτ + ε2

∫ t

0

∫ ∞

−∞
Gθ dx dτ.

Now let A(t) be defined by setting A2(t) equal to the integral on the left side of (A.2). It
follows easily from (A.2) that

A2(t) ≤ C

∫ t

0

[
ε2A(τ) + εA2(τ)

]
dτ

where C depends only on the norm of r in H5, and hence, by Lemma 3.10, only on K. By
Gronwall’s inequality, it then follows that

A(t) ≤ C1ε(e
C2εt − 1)

for all t ≥ 0. In particular, it follows that for any D > 0 one can find C > 0 such that

A(t) ≤ Cε2t

for all t ∈ [0, D/ε]. Thus, for t ∈ [0, D/ε], we have ‖q − r‖L2 ≤ Cε2t, ‖qx − rx‖L2 ≤ Cε3/2t,
and

‖q2 − r2‖L2 = ‖(q − r)(q + r)‖L2 ≤ ‖q − r‖L∞‖q + r‖L2

≤ C‖q − r‖1/2
L2
‖qx − rx‖1/2

L2
≤ C(ε2t)1/2(ε3/2t)1/2 = Cε7/4t.

Therefore
ε‖q2 − r2‖L2 ≤ Cε11/4t ≤ Cε2t,

as desired.
In case j ≥ 1, the argument is easier. Starting from (A.1) and following the procedure in

Subsection 3.3 above, one obtains that the quantity Aj(t) defined by

A2
j(t) =

∫ ∞

−∞

j∑

k=0

[
θ2
(k) +

1

6
εθ2

(k+1)

]
dx

satisfies the estimate
Aj(t) ≤ Cε2t,

where C depends only on K. Hence ‖q − r‖j ≤ CAj(t) ≤ Cε2t. In particular, using Lemma
3.10 we have

‖q + r‖j ≤ ‖q − r‖j + 2‖r‖j ≤ Cε2t + C ≤ C

for all t ∈ [0, D/ε], where C depends only on K and D. Since Hj is an algebra for j ≥ 1, it
transpires that

ε‖q2 − r2‖j ≤ Cε‖q − r‖j‖q + r‖j ≤ Cε‖q − r‖j ≤ Cε3t ≤ Cε2t,

as desired. ¤
Theorem A2. Let s ≥ 1 be an integer. Then for every K > 0, there exists C > 0 such

that the following is true. Suppose g ∈ Hs with ‖g‖s ≤ K, and let r be the solution of the
KdV equation (1.5) with initial data r(x, 0) = g(x). Then for all ε ∈ (0, 1] and all t ≥ 0,

(A.3) ‖r(·, t)‖Hs ≤ C.
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Further, for every integer k such that 1 ≤ 3k ≤ s, it is the case that

‖∂k
t r(·, t)‖Hs−3k ≤ C.

Proof. Define

ρ(x, t) =

(
3ε

2

)
r(

√
ε/6(x + t),

√
ε/6 t),

so that ρ is a solution of the equation

(A.4) ρt + ρρx + ρxxx = 0.

As explained in the discussion on pp. 576–8 of [16], there exist a countable number of
explicitly-defined functionals I0, I1, I2, . . . which are, at least formally, conserved under the
flow defined by (A.4). As a consequence of the well-posedness theory of KdV presented in
[16], one has that in fact Ik(ρ) is independent of time for 0 ≤ k ≤ s, provided ρ ∈ Hs and
s ≥ 2. This result was later extended to s ≥ 0 in [18].

Now the functionals Ik are defined on functions f(x) of one real variable by integrals of the
form

Ik(f) =

∫ ∞

−∞
Pk(f)(x) dx,

where Pk(f) denotes a polynomial function of f and its derivatives. In fact, Pk(f) consists of
a linear combination of monomials

(f)a0

(
df

dx

)a1
(

d2f

dx2

)a2

. . .

(
dpf

dxp

)ap

,

in which the “rank” of each monomial, defined as
∑p

i=0(1 + 1
2
i)ai, is equal to k + 2. Hence if

ρ(x, t) and r(x, t) are viewed as functions of x parameterized by the variable t, we have

Pk(ρ)(x, t) = εk+2P̃k(r)(
√

ε/6(x + t),
√

ε/6 t)

for all x and t, where P̃k(f) denotes another polynomial function of f and its derivatives,
which like Pk(f) has coefficients which are independent of ε. Now define a functional Ĩk by
the formula

Ĩk(f) =

∫ ∞

−∞
P̃k(f)(x) dx.

Since Ik(ρ) is independent of time, it follows that Ĩk(r) is independent of time. Then the
same argument as used to prove Proposition 6 of [16] allows us to conclude that the norm of
r in Hs remains bounded for all time, with a bound which depends only on the Hs norm of
r(x, 0) = g(x). Notice in particular that since the quantity ε does not appear in the definition
of the functionals Ĩk, the bound thus obtained is independent of ε.

This proves the existence of the desired constant C in (A.3). The desired bounds on the
time derivatives of r then follow immediately by using (1.5) to express time derivatives in
terms of spatial derivatives. ¤
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