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SOLITARY-WAVE SOLUTIONS OF THE BENJAMIN EQUATION*

JOHN P. ALBERT! JERRY L. BONA! anp JUAN MARIO RESTREPO®

Abstract. Considered here is a model equation put forward by Benjamin that governs ap-
proximately the evolution of waves on the interface of a two-fluid system in which surface tension
effects cannot be ignored. Our principal focus is the traveling-wave solutions called solitary waves,
and three aspects will be investigated. A constructive proof of the existence of these waves together
with a proof of their stability is developed. Continuation methods are used to generate a scheme
capable of numerically approximating these solitary waves. The computer-generated approximations
reveal detailed aspects of the structure of these waves. They are symmetric about their crests, but
unlike the classical Korteweg-de Vries solitary waves, they feature a finite number of oscillations. The
derivation of the equation is also revisited to get an idea of whether or not these oscillatory waves
might actually occur in a natural setting.

Key words. Benjamin equation, solitary waves, oscillatory solitary waves, stability, continua-
tion methods
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1 INTRODUCTION

This paper was inspired by recent work of Benjamin ([7], [8]) concerning waves on
the interface of a two-fluid system. Benjamin was concerned with an incompressible
system that, at rest, consists of a layer of depth h; of light fluid of density p; bounded
above by a rigid plane and resting upon a layer of heavier fluid of density ps > p1 of
depth hs, also resting on a rigid plane. Because of the density difference, waves can
propagate along the interface between the two fluids. In Benjamin’s theory, diffusiv-
ity 1s ignored, but the parameters of the system are such that capillarity cannot be
discarded.

Benjamin focused attention upon waves that do not vary with the coordinate
perpendicular to the principal direction of propagation. The waves in question are
thus assumed to propagate in only one direction, the positive # direction, say, and to
have long wavelength A and small amplitude a relative to h;. The small parameters
€ = % and p = th are supposed to be of the same order of magnitude, so that
nonlinear and dispersive effects are balanced. Furthermore, the lower layer 1s assumed
to be very deep relative to the upper layer, so that 6 = Z—f is large.

The coordinate system is chosen so that, at rest, the interface is located at z = 0.
Thus, the upper bounding plane is located at z = hy; and the lower plane at z = —hs.

Let n(z,t) denote the downward vertical displacement of the interface from its rest
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position at the horizontal coordinate x at time? (so that positive values of 5 correspond
to depressions of the interface). When the variables are suitably non-dimensionalized
(see Section 2 below), the equation derived by Benjamin takes the form

(1) Mt + co (7717 + 2rnn, — aln, — 677xxx) =0,

where the subscripts denote partial differentiation. The coefficients in (1) are given

by
o= P22/ . 3%
p1 ) 4]7,1’

o = h1p2 ﬁ _ T
22p1’ 297%(p2 = p1)’

where T is the interfacial surface tension and g is the gravity constant. The operator
L = HOJ, is the composition of the Hilbert transform H and the spatial derivative. A
Fourier multiplier operator with symbol |k|, L first arose in the context of nonlinear,
dispersive wave propagation in the studies [5] and [16] on internal waves in deep water
(see also [25]).

Benjamin pointed out that the functionals

1 < I1 1 1
F(n) = / §n2da: and G(n) = / [37“773 - 50477L77 + 56% dx

— 00

are constants of the motion for Eq. (1); that is, if 5 is a smooth solution of Eq. (1)
that vanishes suitably at # = +oo, then F(n) and G(5) are independent of ¢, being
determined by their initial values at ¢ = 0, say. Note that F'+ (G is a Hamiltonian for
Eq. (1).

For o« = 0, Eq. (1) has the form of the Korteweg-de Vries equation (KdV equation
henceforth), while for 3 = 0, the form is that of the Benjamin-Ono equation. In fact,
the signs of the third and fourth terms on the left-hand side of Eq. (1) are such that
the KdV-type dispersion relation arising from the fourth term competes against the
Benjamin-Ono-type dispersion relation arising from the third term. To see this more
clearly, consider the linearized initial-value problem

Ui + ¢o (7717 - aLnx - 6771'@'1') = 0;

(2) n(z,0) = f(z),
posed for # € R and ¢t > 0. The formal solution of Eq. (2) is
1= X
1) = — tk(z—cp(k)t) dk
oot =g= [ o f(k)dk

where f denotes the Fourier transform of f and the function cp(k), known as the
dispersion relation for Eq. (2), is given by

(3) cg(k) = cp(k;a, B) = co(1 — alk| + Bk?).

The KdV dispersion term k% and the Benjamin-Ono dispersion term «lk| have
opposite signs in Eq. (3), and are comparable in size when |k| is near k,, = «/28, the
value of |k| at which cp takes its minimum ¢, = ¢o(1 — @?/43). Figure 1 shows the
behavior of ¢p(k) near k£ = 0 for various values of & when 8 =2 and ¢y = 1.

Notice that the dispersion relation has a discontinuous first derivative at k& = 0
for a > 0, and that the value of ¢,, will be positive as long as a?/43 < 1. According
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FIGURE 1. Dispersion relation cp(k; o, 8) with 8 = 2.0.

to Benjamin’s commentary, Eq. (1) should be physically relevant when o?/483 is com-
parable in size to p, so that (cg — ¢ )/eo is comparable to g, and k,, is comparable
to g/ which is of order 1. Tt follows that for values of k near k,, the contributions of
the KdV and Benjamin-Ono terms to the dispersion relation are of similar magnitude
and are oppositely directed. The question of the relative sizes of these two dispersive
terms will be discussed at more length in Section 2.

In this paper, attention is focused on solitary-wave solutions of Eq. (1), which are
solutions of the form

n(z,t) = (e — co(1 — O)),

where ®(X) and its derivatives tend to zero as the variable X = » — ¢o(1 — C)t
approaches too. The dimensionless variable (' represents the relative decrease in the
speed of the solitary wave from the speed ¢g of very long-wavelength solutions of the
linearized Eq. (2). Substituting this form for 5 into Eq. (1) and integrating once with
respect to X yields the equation

C®—aLd — " +r®? =0,

which, after transforming the dependent variable to

4) G(X) = @ (@X) ,
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can be rewritten as

(5) Q(¢a7)5¢_27L¢_¢//_¢2:0a

where
o

N el

Thus, possible solitary-wave solutions of Eq. (1) are solutions of the family of equations
Eq. (5), indexed by the parameter 4. Since the assumptions underlying the derivation
of Eq. (1) imply that C' is a small number, of size comparable to (¢o — ¢n)/co ~
p ~ o2 /43, it follows that in the regime of physical parameters for which Benjamin’s
equation is relevant, v should be an order-one quantity.

The questions of existence, asymptotics, and stability of solitary-wave solutions
(1) were studied by Benjamin in [7] and [8]. Using the degree-theoretic approach
[9], he showed that for each value of v in the range [0,1), Eq. (5) has a solution
¢ = ¢ which is an even function of X with

of
of

¢7(0) = max¢,(X) > 0.

Notice that, according to the transformation in Eq. (4), such a ¢, corresponds to a
wave motion for which the interface is deflected upwards at the point of maximum
deflection. In this respect, the solitary-wave solutions of Eq. (5) differ from Benjamin-
Ono-type solitary waves, which in the fluid system considered here would correspond
to downward deflections of the interface. Also, the condition 0 < v < 1 means that the
dimensional wave speed of the solitary wave lies in the range —oco < ¢g(1 = C) < ¢y
In particular, values of ¥ near zero correspond to large negative wave speeds, and thus
to solutions of questionable physical relevance.

Benjamin also provided some formal asymptotics suggesting that, for each fixed
value of v, there is a bounded range of values of X in which the solitary wave ¢ (X) will
oscillate between positive and negative values, and that outside this bounded region,
|¢~(X)| should decay monotonically like 1/|X|?. Finally, he sketched a perturbation-
theoretic approach to a proof of existence of a branch of solutions of Eq. (5), defined
for v near 0, which correspond to stable solutions of the initial-value problem for
Eq. (1).

The plan of this paper is as follows. In Section 2 we determine more precisely the
range of parameters for which Eq. (1) is a good approximation to the more general
equations from which it was derived. This aspect bears crucially on whether these
waves are realizable in the laboratory or can be expected to occur in nature. In
Section 3, we present a complete theory of existence and stability of solitary-wave
solutions corresponding to values of ¥ near 0; in fact this result will appear as a
special case of a general result on perturbations of solitary-wave solutions of nonlinear
dispersive wave equations. Qur argument is based on the Implicit Function Theorem,
and yields an analytic dependence of solitary waves on the parameter v. Section 4 is
devoted to explaining an algorithm for the approximation of solitary-wave solutions.
The algorithm is a continuation method based on the Contraction Mapping Principle
that underlies the proof of existence made via the Implicit Function Theorem. We
then present some numerical approximations of solitary-wave solutions of Benjamin’s
equation using a computer code based on this algorithm. The output graphically
reveals aspects of the structure of the solitary-wave solutions of Eq. (1). The paper
concludes with a summary and further discussion in Section 5.
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2 PHYSICAL REGIME OF VALIDITY OF BENJAMIN’S EQUATION

In this section we examine the conditions under which the dispersion relation
appearing in Benjamin’s equation is a valid approximation to the dispersion relation
induced by a more general system of equations for internal waves in a two-fluid system.
Some general conclusions are drawn as to the types of fluids and configurations for
which Benjamin’s equation may be relevant as a model, and for which solitary waves
of the type considered in Sections 3 and 4 below might be observed.

Consider two incompressible fluids, each of constant density, contained between
rigid horizontal planes, with the lighter of the two fluids resting in a layer of nearly
uniform depth atop a layer of the heavier fluid, also nearly uniform in depth. Ideally,
the fluids are non-dissipative, but for real fluids we require that the Reynolds num-
ber induced by the dynamics under consideration be large. We also ignore possible
diffusive effects across the interface that would lead to nonhomogeneous layers. It is
assumed that the balance of pressure on either side of the interface is proportional
to the curvature of the interface. The only external force acting upon the system is
that of gravity. The flow is assumed to be irrotational (within each of the layers of
fluid) and is two-dimensional in the sense that the flow variables depend only on a
horizontal coordinate @, the vertical coordinate z, and the time variable t.

The equations that govern the dynamics of the two-fluid system just described
are well known (see [19] and references contained therein). In the interior of each fluid
layer, the laws of conservation of mass and momentum imply the equations

¢ixx + ¢izz =0 (Z =1, 2)
and

1 1
Pi ¢it+§(¢ix>2+§(¢iz)2+gz =-p (i=1,2).

Here g is the gravitational acceleration; ¢ = 1 connotes the upper layer and ¢ = 2
the lower layer; and the fluid variables within each layer are the velocity potentials
¢i(x, z,t), the pressures p;(x, z,1), and the densities p;. The boundary planes, which
are located at z = hy and z = —hy, are rigid and impermeable, so that

¢1z:0 atz:h1

and
¢2, =0 at z = —hs.

At the interface z = n(x,t) (which is located at z = 0 when the system is undisturbed),
one has the kinematic conditions

77t_¢i2+¢ix77x:0 (Z:LQ)

and

P2 — 1= =1 Mes,

where T denotes the interfacial surface tension. In the latter equation, 7., 1s a good
approximation to the curvature of the interface provided the slope 7, is small.

As in Section 1, we assume that € = a/hy; and g = hy /X are small, where a is a
typical amplitude and A a typical wavelength of the interfacial waves being modeled.
To make explicit the effects of this assumption, we non-dimensionalize the variables
in the above equations, so that the rescaled variables and their derivatives have values
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on the order of unity, and small terms will be identified by the presence of factors of
¢ or p. The rescaled independent variables (marked by tildes) are

- r 7 vt - Z N z
r=< =73 21 = 7 7
Tl ho

) ) z =
A A :
where v denotes y/gh; and z is rescaled to z; at points above the interface and to Z,
at points below the interface. The dependent variables are rescaled as

_ P N5 Vo

" opa?’ = YT ogda’

If the equations of motion are written in the non-dimensionalized variables, and
then linearized by omitting terms of higher order in €, the resulting equations will
have sinusoidal solutions of the form

bi(x, zi,t) = Ai(k, z)e* T (1 =1,2),
pile, zi, 1) = Bi(k, z)e* == (1 =1,2),
U(l‘,t) — C(k)eik(x—ct)’

where k is an arbitrary real number. (Here and henceforth, tildes have been dropped
from the variables for ease of reading.) The linearized equations of motion determine
not only the forms of the functions A;, B;, and C, but also the dispersion relation

Cz(k’) — T(1+Bﬂ2k2)
(14 7)uk coth(pék) + pk coth(uk)’

~— N

in which the influence of the physical configuration of the system is manifested only
through the dimensionless quantities

8= hy/hy,

7= (p2/p1) — 1,

and

T
(p2 = p1)ghi’
The parameter B plays a role in the present problem analogous to that of the Bond
number in the theory of surface waves.

To obtain conditions for the validity of Benjamin’s equation, we now determine
when the function ¢(k) may be approximated by a function of the form appearing in
Eq. (3) above.

When 6 = pé is large enough that coth(f) ~ 1, and [k| is not too small, the
function ¢?(k) is approximately equal to

. B (14 Bu?k?)
(7) calk) = (14 m)ulk| + pk coth(pk)

An expansion of the denominator of Eq. (7) with respect to the small parameter p
yields

B =

1

calk) =T (1+ Buzkz)l/z 1— %(1 + )|kl + (g(l +7)* - 6) k2 p® + O(u?’)] :

The approximation which results in the Benjamin equation now proceeds on the as-
sumption that the combination Bu?, which we henceforth denote by o, is a small
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parameter. Indeed, o and 7 are related to the parameters « and 3 introduced in
Section 1 by

P LU 0
2 2
and therefore, if 7 is not too large, Benjamin’s assumption that a?/48 = O(u) corre-
sponds to the assumption that & = O(p). For the moment, however, we simply treat
o as a small parameter without comparing its size to that of ;. Then an expansion of
¢q(k) through quadratic order in both y and ¢ yields the expression

1 1 3 1
calk) = /1|1 - 5(1 + 1) |kl + 5]6'20' + (g(l +7)% — 6) k2

1 1
(8) —7(1+ )k k| po — §k402 +0(1°, p*o, po, 03)] :

(A minor error in Eq. (2.2) of [7] has been corrected here.)

In the present scaling, the wavenumbers & of interest will have absolute values
on the order of unity. Therefore the terms on the right-hand side of Eq. (8) can be
ordered according to the size of the numbers (1 + 7)u and o. One way to arrive at an
approximate dispersion relation of the form appearing in Eq. (3) is to assume that

(9) (1+7)°° <o

Then, to first order in (1 4+ 7)y, the function ¢,(k) can be approximated by
1 1,
co(k) = V7|1 =51+ 7)lklu+ k0|,

which is the same form as that obtained by Benjamin.
To verify the validity of the above formal arguments, and to obtain an idea of the
sizes of the error terms in the approximations, the relative error

co(k) — c(k)
e(k)

was plotted against k for various values of the parameters 6, u, o and 7. A typical
plot is shown in Figure 2a, where k£ and ¢ vary over the ranges —1 < k < 1 and
0 < o < 1.25, while § = 100, 7 = 0.5, and g = 0.05 are held constant. The relative
error is small for small values of ¢, and stays below 10% even for values of o up to
unity. The ridge down the middle of the surface, which persists up to the point where
o =0 and k = 0, is due to the error of replacing coth(6k) by sgn k, which was made
in passing from ¢(k) to the approximation ¢,(k) in Eq. (7). Here # = 5, and coth(#k)
will not be close to sgn k for |k| less than about 0.5; yet the overall approximation
remains accurate. As can be seen from Figure 2b, even reducing 6 to # = 1.5 only
slightly magnifies the error. In Figure 2¢, p varies over the range 0 < u < 0.5 while
o =10.01, 7 =0.5, and # = 5 are held constant. Comparison with Figure 2a shows
that the relative error is more sensitive to g than it is to o, although it 1s within a
reasonable range for pu between 0 and 0.25. Finally, Figure 2d (in which é = 100,
o = 0.01, and g = 0.05 are held constant) shows that the relative error increases only
slowly with 7 in the range 0 < 7 < 1 and beyond. In general, ¢;(k) will be a good
approximation to ¢(k) over the range |k| < 1 provided g and ¢ are small, ¢ is not too
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FIGURE 2. The relative error =<, for (a) p = 0.05, 7 = 0.5, § = 5; (b) u = 0.05, 7 = 0.5,

c

6=1.5;(c)oc=001,7=05,0=5;(d) u=0.05,0 =0.01, 6§ = 5.

small, and 7 is not too large. When 8 > 5 and 7 < 0.5, for example, the relative error
of the approximation is less than 1% for 0 < ¢ < 0.5 and 0 < ¢ < 0.25.

The computations just described show that condition (9) is not necessary for the
validity of Benjamin’s approximation to the dispersion relation. However, when (9) is
violated, ¢ is small enough that the contribution of the term %kza to the right-hand
side of ¢;(k) is no more significant than the contribution of the O((1 + 7)?u?) term
in Eq. (8), so that the Benjamin dispersion relation is no better an approximation of
c(k) than is the Benjamin-Ono dispersion relation

cpo(k) =1 |1— %(1 + 1)k -
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Furthermore, if (9) is violated, then the solitary-wave parameter

o (I41)p
7_2\/6_0_ 8c(C

will not be less than 1 unless C' is on the order of unity or greater. The condition
7 < 1 is necessary for the existence of the solitary waves studied below in Sections
3 and 4. But, as mentioned in Section 1, solitary-wave solutions of physical interest
should correspond to values of C' on the order of y, or in other words to values of ('
much less than unity. Therefore (9) is a necessary condition for the physical relevance
of the solitary-wave solutions considered in Sections 3 and 4.

To summarize the foregoing, ¢; is a good approximation to ¢ when § > 6y & 2,
T <71 &b p<l, and ¢ € 1. Furthermore, if solitary waves of the type studied
below in Sections 3 and 4 are to exist and be consistent with the assumptions made
in deriving the Benjamin equation, then condition (9) should also be satisfied.

We conclude with a brief discussion of the experimental implications of the above
conditions. In a laboratory setting, the requirement that g < 1 could be met either
by making the upper layer very thin or by creating waves with long length scales.
If hy is small, however, then the Reynolds number R = vhy /v (in which v = \/ghy

and v 1s a measure of a mechanism such as dynamic viscosity which attenuates the

waves) will not be large. Hence attenuation will play a significant role in the dynamics
of the system, and the inviscid equation (1) will not be an accurate model even on
short time scales. Thus in a laboratory experiment for testing the predictions of
Eq. (1), the upper layer should not be made extremely thin, and disturbances with
long wavelengths relative to the upper layer should be created. On the other hand,
the requirement that g < 1 and 8 = ué > 6y combine to imply that Z—f > 0o/ > 1,
so that the lower layer will have to be fairly deep.
The requirement o < 1, or in other words,

Bu® <1,

1s satisfied in any configuration of two fluids if the waves under consideration are long
enough so that g = hy /X is sufficiently small. On the other hand, the requirement in
condition (9), which can be written as

(14+7)* < B,

is independent of the wave parameter p and so represents a restriction on the allowable
configurations of the system. Indeed, when one takes into account that the fluid depth
hy should not be too small, the restriction becomes fairly severe. If, for example,
p2 —p1 = 0.05 g/cm? and hy is to be greater than 1 em, then (9) will hold only if the
surface tension T', measured in dyne/cm, satisfies T//50 >> 1: a condition that would
not be easy to meet in the laboratory.

3 EXISTENCE AND STABILITY OF SOLITARY- WAVE SOLUTIONS

At issue in this section 1s the mathematical question of existence of solitary-wave
solutions n(x,t) = ®(x — ¢o(1 — C)t) of Eq. (1) for small values of the parameter
v = a/(2¢/BC). If these waves exist, their physical relevance comes into question,
and thus their stability is also within the purview of an initial inquiry. For v = 0,
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existence is provided by the exact formula

3C

1
n(x,t) = —Tsech2 ¢

3 E(x — (1l =)

and stability was settled affirmatively some time ago (see [3], [6], [11]). In [8], Ben-
jamin presented a degree-theoretic proof of existence of solitary waves correspond-
ing to all values of ¥ in the range 0 < 5 < 1 (An alternative proof based on the
Concentrated-Compactness Principle has been worked out in [15]). Benjamin also
outlined an argument, based on the Implicit Function Theorem for proving existence
of solitary waves when ~ 1s small. The aim of this section is to complete and generalize
the latter argument. Although limited to the case of small v, it has several advantages
over the degree-theoretic approach. First, it is constructive in nature, and leads nat-
urally to the method used below in Section 4 to compute solitary waves numerically
for all values of v in [0,1). Secondly, the arguments used here yield not only the
existence of a branch of solitary waves for an interval of positive values of v, but also
the continuity and in fact the analyticity of this branch with respect to . This in
turn makes 1t possible to establish such properties as the stability of the solitary waves
with regard to small perturbations of the wave profile, when considered as solutions
of the time-dependent equation. In what follows, let H"(IR) be the Sobolev space of
functions ¢ which satisfy

lall? = / (14 B2 [qk)P dk < .

bl

For any pair of Banach spaces X and Y, let B(X,Y") be the space of bounded operators
from X to Y with the operator norm.
Consider a general class of equations of the form

(10) ue + (f(u) + lg(w))e — (M + 1S)uz = 0,

where f : R — R, g : R — R, and M and S are Fourier multiplier operators defined
by
Ao (k) = p(k)a(k)

and

Sv(k) = o(k)o(k).
We make the following assumptions.

(A1) The functions p(k) and o(k) are measurable and even, and p(k) is non-
negative.

(A2) There exists a number s > 0 and positive constants By, Bs, and Bs such
that, for all sufficiently large values of k, By |k|* < p(k) < Bs|k|® and |o(k)| <
Bs|k|®.

(A3) The functions f and g are smooth, and f(0) = ¢(0) = 0.

A solitary-wave solution of Eq. (10) is a solution of the form u(z,t) = ®(x — Ct),
where €' > 0 is the wave speed and @ is a localized function, which is to say that
P(y) — 0 as y — +oo at least at an algebraic rate. We say that such a solution is
(orbitally) stable, with respect to a given norm, if the distance between a solution
u(z,t) of Eq. (10) and the orbit {a(-,t) : ¢ > 0} remains arbitrarily small in norm for
all time, provided only that u(z,0) is close enough in norm to u(z, 0).
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The present-day theory of stability of solitary waves dates back to the paper of
Benjamin [6] as corrected in [11], and has undergone considerable development since
then (cf. [3], [13], [18], [28]). Here we employ the criterion for stability set forth in
[13]. Define the operator £ : L*(R) — L%*(IR) by

(11) L=C+M+1S— /(D) —1g(®),

where C, f'(®), and ¢'(®), are viewed as multiplication operators. According to
Theorem 4.1 and the proof of Lemma 5.1 of [13], the solitary wave u(z,t) = ®(x — C?)
will be stable with respect to the H*/2-Sobolev norm provided that the following two
conditions on £ are met:

(C1) when viewed as an operator on L?(R) with domain H*¢, £ is self-adjoint, with
one simple negative eigenvalue, a simple eigenvalue at zero, and no other part
of 1ts spectrum on the non-positive real axis, and

(C2) there exists x € L*(IR) such that £(x) = ® and f_oooo x(2)®(x) de < 0.
We now make a final assumption about Eq. (10).

(A4) For [ =0, Eq. (10) has a solitary-wave solution u(xz,t) = ®¢(x — Ct), where
C > 0 and ®y(z) is a smooth, even function which belongs, together with all
its derivatives, to the space L?(IR). Moreover, the operator L£q associated to

®, via Eq. (11) satisfies conditions (C1) and (C2) above.

It will now be shown that assumptions (Al) through (A4) imply the existence
of an analytic map [ — ®;, defined for [ in a neighborhood of { = 0 and taking
values in L?(R), such that for each [, the function u(z,t) = ®;(x — Ct) is a stable,
solitary-wave solution of Eq. (10). The proof of this assertion proceeds via the Implicit
Function Theorem and relies on the classical perturbation theory of linear operators
as expounded in Kato’s book [21]. Tt is straightforward in outline, but not all the
details are simple.

For » > 0, let H? denote the closed subspace of all even functions in H"(R).
iFrom assumption (A2) it follows that there exist positive constants {;, By and Bs
such that for all { € (={1,{1) and for |k| sufficiently large, one has

(12) Ba(14 k*)*1% < C + p(k) + lo(k) < Bs(1 4 k*)*/?.

In consequence, the function C'+ p(k) + lo(k) defines a multiplication operator M on
the space {¢ : ¢ € H!} whose maximal domain is the space {g : ¢ € H!T*}. Since
maximal multiplication operators are self-adjoint, and the operator C' + M + 1S is
unitarily equivalent to M via the Fourier transform, then C'+ M + 1S 1s self-adjoint
on H! with domain H!t*. It is straightforward to adduce that for small enough , the
spectrum of the operator M, and hence the operator C'+ M + IS, is a subset of an
interval of the form [b, +00), b > 0, and is comprised of continuous spectrum.

Let ¢ denote any function in H!, and define the multiplication operator @ on H!
by Qv = (f'(¢) + 19’ (#))¥. Since f'(¢) € HL, ¢'(¢) € HL, and H! is an algebra, it
follows that @ is a bounded operator on H}. Hence, by Theorem V—4.3 of [21], the
operator C' + M + 1S — @ is self-adjoint on H! with domain H!**. Moreover, @ is
relatively compact with respect to C'+ M + 1S (this may be verified, for example, by
using the argument in the proof of Lemma 3.17 of [4] together with the fact that

/| @@ e and /| O O e
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tend to zero as R — oo). Hence, as in Theorem V-5.7 of [21], it follows that the
spectrum of £ consists of a continuous spectrum, identical to that of C'4+ M 4+ 15,
together with a finite number of real eigenvalues of finite multiplicity.

Let I = (=l1,11), and define a map F : I x H}** — H! by

F(l,¢) = (C+ M +15)(¢) — [(¢) —lg(¢).

. . N or . .
A calculation shows that the Fréchet derivative Fiy = % exists on [ x H!T* and is

defined as a map from I x H!*™* to B(H!** H!) by
Fo(l,d) =C+M+1S - Q.

iFrom hypothesis (A4), it follows that F(0,®;) = 0 and that the operator £y =
F3(0,®0) has a one-dimensional nullspace N in L?(R). Upon substituting u(z,t) =
$y(x — Ct) in Eq. (10) and differentiating once with respect to z, one finds that
Lo(®}) = 0, whence ®) € N. Since ®} is odd, it is not a member of H!** and it
follows that Lo : H1** — H! is invertible. Finally, since L and M map H!** into
H! boundedly and the maps ¢ — f(¢) +lg(¢) and ¢ — f'(¢)+1g'(¢) are continuous
maps from H! into itself, then F' and F}, are continuous maps from I x H!** into
their respective target spaces H! and B(H!*® H!). Hence all the conditions of the
Tmplicit Function Theorem (see [17], Theorem 15.1) are met, and it may be concluded
that there exist a number {3 > 0 and a continuous map { — &; from (—l2,2) to H;"’s
such that F(I,®;) = 0 for all | € (—l2,{2). Indeed, since F(I,®) depends analytically
on [, the map [ — ®; is analytic as well.

The existence of the desired family of solitary-wave solutions of Eq. (10) has now
been demonstrated, and it remains to prove that these solitary waves are stable, at
least when [ is sufficiently near zero. Consider the map

l— L= Fs(l,®y),

which is defined on the interval (—l2,/2) and takes values in the space C of closed
operators on L%(IR). For I, I' in (=2, l5), it follows from Eq. (12) that

(C+ M+15)" ' —(C+ M +US)"pr2,r2) =
sup |(C' + p(k) + 1o (k)™ = (C + p(k) + U'o(k)) ™|
kel

()

< |l —U[sup
kel

Hence (C'+ M +1S5)~! tends to (C'+ M +1'S)~! in the norm of the space of bounded
operators on L?(IR) as [ approaches . Therefore, by Theorems IV-2.14 and 1V-2.20
of [21], £; varies continuously with [ in the topology of generalized convergence on
C. Hence the results of section TV—4 of [21] imply that the eigenvalues of £; depend
continuously on . In particular, since the function ®} is an eigenfunction of £; with
eigenvalue 0, one obtains that the condition (C1) holds for all { sufficiently near zero.
Also, for these values of [, 0 is not an eigenvalue of £; in H!, and therefore by Theorem
IV-2.25 of [21], the operator £ ' varies continuously with { in B(LZ?, L?). Hence the
map [ — El_l(q)l) is a continuous L2-valued map for [ in some neighborhood of zero,
and so the condition (C2) holds for these values of {. This is enough to conclude, by
the theory put forward in [13], that the corresponding solitary waves ®; are stable.
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To apply the above theory to the Benjamin equation, first make the change of
variables u(z,t) = n(x — ¢, —t/cp), reducing Eq. (1) to

Uy — 2rutly + oLy + fges = 0,

which has the form of Eq. (10) with f(u) = —ru?, g(u) = 0, p(k) = Bk?, o(k) = —|k],
and { = «. Assumptions (A1) through (A3) clearly hold in this case; and assumption
(A4) becomes a well-known property of the Schrodinger operator associated with the
KdV-solitary wave (see [24]). Hence, from the general result just expounded, it follows
that for every C' > 0 there exists a number ag = a(C') such that, for all &« € (—ayg, ag),
the above equation has a stable solitary-wave solution u(x,t) = ®(x — Ct). Then
n(z,t) = ®(x — co(l — C)t) is a stable solitary-wave solution to Eq. (1). In fact,
using the transformation in Eq. (4) one sees easily that the properties of existence
and stability of solitary-wave solutions of Eq. (1) depend only on v = «a/2y/3C, in
the sense that if a1/2y/B1C = a3/2y/B>C, then the profile function ®; of a stable

solitary-wave solution corresponding to «ay, 81, C7 is transformed via

B B

G G0 = gl e
into the profile function @, of a stable solitary-wave solution corresponding to as, 3s,
(5. Hence the number ag defined above can be taken as oy = 279/BC, where o is
independent of C'.

It is also known (see [1], [10]) that assumptions (A1) through (A4) are valid if
one takes p(k) = |k| (so that Eq. (10) with { = 0 is the Benjamin-Ono equation) or if
p(k) = kcothkh — (1/h), where h > 0 (in which case Eq. (10) with { = 0 is known as
the Intermediate Long-Wave equation). Therefore the above theory applies, and one
may conclude that existence and stability of solitary waves persists for perturbations
of these equations as well.

o

4 NUMERICAL APPROXIMATION OF SOLITARY WAVES

4.1 Description of the Numerical Scheme.

A family of approximate solutions to Eq. (5) was found numerically by starting
from an exact solution at ¥ = 0 and using a continuation method to reach values
of 7 near 1. Some of these calculated approximations appear in Figures 3 and 4 (in
which the spatial domain has been rescaled to unity). These figures indicate that the
solitary-wave solutions are symmetric waves which have prominent oscillatory tails
when 7 is close to 1, and whose maximum excursion from the rest state decreases as
v approaches 1 (see Figure 5).

In solving Eq. (5), the variable X was first rescaled by multiplication by a factor A,
where A was chosen small enough that the significant support of the rescaled solutions
fell within the compuatational interval [0, 27]. (In the examples presented here, A =
0.051.) The nonlinear differential equation (5) was then recast as a system of algebraic
equations using Fourier methods [14]. For an even, positive integer N, denote by
Sx the subspace of L?[0,27] spanned by the functions e’*X where k ranges over
—N/2 <k <(N/2)—1. Let Py : L*[0,27] — Sn be the orthogonal projection on Sy
in the standard inner product (-,-) of L2[0,27]. Thus, Px¢ is the truncated Fourier
series

53] N/2-1
> (/B(k)e““X] = Z d(k)(ikX)

k=—o0 —N/2
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FIGURE 3. Solitary-wave solutions, scaled to the domain [—0.5,0.5]. (a)~ = 0.00, (b) v =

0.70, (c) v =0.90, (d) v = 0.97. The vertical scale is the same in all figures. N = 512.

5
5

of ¢, where (/;(k) denotes the k** Fourier coefficient of ¢. )
Demanding that ¢ € L?[0, 27] satisfy PyQ(Pn¢,v) = 0, where () is the rescaled
version of the operator @ in Eq. (5), yields the system of equations

(13) c(k;y)d(k) — (¢ ¢)(k) = 0

for the Fourier coefficients of ¢. Here, e(k;v) = 1 — 2y]k|A + A?k? and the discrete

convolution in the second term is defined as (QAS * (/;)(k) =>4 (/;(l)q;(k — 1), where the
sum is taken over all { such that —N/2 <1< (N/2)—1and —=N/2 < k—1 < (N/2)-1.

0.5
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FIGURE 4. Solitary-wave solution for v = 0.99. The spatial domain has been scaled to unity.

Note the vertical scale. N = 512.
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FIGURE 5. Logarithm of the sup-norm of the computed solutions as a function of 1 — ~.
N = 512.

The nonlinear system (13) may be written compactly as the one-parameter system

(14) Y(7,0(k)) =0,

where Y : [0,1) x CN¥ — C¥. Our approach is to solve Eq. (14) numerically for

the numbers {qg(k,'y) QZZ—N/Z; the corresponding function ¢(X,v) € Sy obtained by
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taking the inverse discrete Fourier transform is then taken to be an approximation
to a solution ¢ of Eq. (5), which is posed on the real line. Although the practice of
numerically approximating solitary waves by periodic functions is fraught with pitfalls
(cf. [22], p. 1146), in the present instance the technique appears to be justified, since
solitary waves have been proven to exist and to have decay properties similar to those
exhibited by our numerical solutions [15].

Assuming Eq. (14) has a branch of solutions that is continuously differentiable
with respect to the parameter v, homotopy methods [26, pp. 127-129] present a
potentially useful method for determining this branch. Such a method uses a known
solution corresponding to a particular value of 4 as an initial guess in an iterative
procedure which seeks to compute a nearby solution on the branch with a slightly
different value of v. This strategy is bound to succeed if the branch of solutions
does not feature bifurcations or folds. In the case of Eq. (14), approximate solutions
are known for v = 0, namely the projections onto Sy of solitary-wave solutions to
the KdV equation. Thus it is possible to initiate a parameter-continuation search of
approximations to an entire branch of solutions to Eq. (5) for 0 <y < 1. We proceed
now to a description of the specific implementation of the general idea just enunciated.

Numerically, solutions of Eq. (14) are approximated by elements qg(k,y) ecN
such that

(15) 1Y (5, ok, )l <7,

where [5 1s the space of square-summable sequences and the residual » was taken to be
1013 for all cases reported in this study. Several values 77 € [0,1) are chosen for which
the solutions ¢(X, 'y]*) are desired. The set i1s arranged so that 77, > 77 and 75 = 0.
The set {77 ]le used in this report is listed in Table 1. Fach segment [y},77,,] is
divided into M, equal segments of size A,, = 27 A, where A is a number that is
much smaller than the segment’s length and is commensurate with it. The refinement
level is characterized by m = 0,1,2, ... The discrete values of the parameter in the
segment depend on the refinement level and are given by

7”:7;‘—|—nAm, for n=0,1,---, My.

The Newton-Raphson method is used to find an approximation (/;(k, 4"+ from

é(k,~y™). This requires the solution of the system of equations
(16)  J"¢(k,v" 1) = I"g(k,v") — A"(y" T —4™),  —N/2<k < (N/2) -1,

for ¢(k,~), where J” = 0Y7/3¢(k,7") and A" = §Y? /94", —N/2 < i < N/2. When
n = M,,, so that yMm= = Yj 41, the set of ¢ calculated with parameter step size A,
is compared to the previously computed solution, obtained with parameter step size
A,,_1. This comparison 1s subjected to the test

(17) 167 (k, 77 1) = "k, 7))l < e,

where the tolerance € was set to 107" in all the examples appearing in this study.
Obviously, Eq. (17) is not checked for m = 0. If, for a given m, the condition in
Eq. (17) fails, the parameter step size is set to Ay 41, leading to a new value My, 41,
and the whole process is started over setting (/;m+1(k,'y”:0) = qg(l,y;‘). The entire

calculation is started using the numbers (/;(k, 0) obtained from the projection onto Sy
of the function %sechz(%(X — x)), which is a (rescaled) analytic solution of Eq. (5)
corresponding to v = 0.
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4.2 Numerical Results.

The calculations were performed using double-precision arithmetic on a DEC-
Alpha 3000 machine. The Jacobian matrix was calculated by hand. The solution of
Eq. (16) was found by using standard LINPACK solvers. The iteration history for
a full range of v for N = 256, shown in Table 1, attests to the good convergence
characteristics of the Newton-Raphson solver used throughout the calculation. Values
of Ap, that achieved the required tolerances in reaching each 77 are listed in Table
1. The homotopy stage between v = 0.8 and v = 0.9 required the smallest values of
A,, to obtain good accuracy. The residual column shows the approximately-quadratic
convergence rate of the Newton Raphson stage of the calculation at those particular
values of A,,.

The Jacobian J of Y is invertible, at least for small values of v. We found
in the calculations no evidence of folds or bifurcations on the branch of solutions
corresponding to v € [0,1). We monitored the condition number of the Jacobian
each time it was assembled in the Newton-Raphson procedure. The condition number
decreased as v increased and depended on N. Its value was more sensitive to N than
v, and was on the order of 107! to 1073 for N = 32 and N = 512, respectively.
The condition number was certainly small, but the accuracy of our calculations was
such that we could safely assert it to be non-zero throughout our computations. A
plot of the la-norm of the solution as a function of the parameter 4 (see Figure 6)
offers no indication of branching of solutions. (The figure is actually a superposition
of the graphs produced with N = 64,128,256, and 512 Fourier interpolants, and, as is
evident, for any value of 7, the ls-norm was substantially the same regardless of N.)

0.30

0.25 - .

0.20

|2

0.15

0.10

0.05

0.00 L 1 n 1 n 1 n 1 n
0.0 0.2 0.4 0.6 0.8 1.0

Y

FIGURE 6. The lo-norm of the solution versus ~v. The superposition of the norms computed
with N = 64,128,256,512 Fourier interpolants are indistinguishable.

The value of the invariants F' and (G defined in Section 1 (see below (1)), when
evaluated on an approximation to a solitary-wave solution, are listed as a function of
the number of interpolants for several values of 4 in tables 2 and 3. It is noted that the
invariants do not change in value with N for N > 128. For the values of v discussed
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here, it was found that N = 128 was more than adequate to approximate solutions
¢ of Benjamin’s equation with tolerances ¢ = 107! and » = 1073, Note that the
Hamiltonian F' + G is positive in the range of vy considered here. The Hamiltonian
decreases with v, reaching very small values as v approaches 1.

The key to resolving these particular wave profiles is capturing the peak in the
Fourier spectra that results from the competition of the dispersion associated with «
and the dispersion associated with 5. As shown in Figure 7, the bandwidth of the
spectra with significant energy is approximately 0 < |k| < 60. (Note that in comparing
the results of this section with the discussion in Section 2 above, it should be borne
in mind that the wavenumber &k in Section 2 has here been multiplied by a factor
of 1/A.) Attempting to resolve the wave with a smaller bandwidth yields a solution
with a qualitatively different shape. Figure 8 shows a portion of the spectrum (/;(k, ¥)

computed using the algorithm outlined in Section 4.1 with v = 0.85. The upper curve
is the superposition of the spectra computed with N = 64, N = 128, and N = 256,
respectively. It was found that the spectra for N > 64 superimposes rather well
on the N = 64 case. The lower curve represents the spectrum as computed using
N =32 and clearly does not capture the characteristic peak in the wave’s spectrum.
Not surprisingly, the N = 32 case did not meet the tolerance associated with the
parameter €. To come to the approximation whose spectrum is displayed in Figure 8
using N = 32, this criteria had to be relaxed from ¢ = 107! to ¢ = 107°.
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0.030

0.020 07 \

0.010

0.000

. I
0.0 20.0 40.0 60.0 80.0 100.0

k
FIGURE 7. Portion of the Fourier spectra as a function of v. N = 512.

Figure 9 shows the energetic portion of the Fourier spectra qg(k,'y) for several

values of vy, making it clear that the peak of the spectrum moves to higher modes as
v gets larger, and the morphology of the spectrum changes significantly in the region
adjoining the peak for v near 1. Furthermore, from the same figure it is evident that,

at k = 0, the spectrum qg(k,y) has a non-zero right-hand derivative. Since qg(k,'y) is
an even function in k, it follows that there 1s a discontinuity in the spectrum at £ = 0.
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the N = 256 run. The Ay, ’s quoted in the table correspond to the size of the step
employed to reach 'yj* within the error tolerances. Tolerance on the residual was 10713,

TABLE 1

Residuals in reaching v* in the Newton-Raphson stage of

v Am Residual v Am Residual
0.10 | 3.125E-03 | 4.274742E-05 | 0.80 | 1.250E-02 | 1.353319E-05
5.171706E-08 7.966373E-08
1.806914E-13 7.479083E-12
5.877141E-25 5.099222E-20
0.20 | 5.000E-02 | 4.808639E-05 | 0.90 | 9.766E-05 | 1.689451E-05
7.438409E-08 3.287065E-07
4.198945E-13 4.811537E-10
4.044869E-24 1.057499E-15
0.30 | 2.500E-02 | 1.159375E-05 | 0.95 | 1.250E-02 | 3.065973E-22
5.338055E-09 1.236640E-34
2.623204E-15
0.40 | 2.500E-02 | 1.100423E-05 | 0.97 | 6.250E-03 | 1.286097E-27
6.216201E-09 4.376426E-35
4.582266E-15
0.50 | 2.500E-02 | 4.157460E-05 | 0.98 | 6.250E-03 | 1.645986E-31
1.100305E-07 7.247277TE-36
1.945366E-12
2.833418E-22
0.70 | 2.500E-02 | 3.180455E-05 | 0.99 | 6.250E-03 | 3.356281E-15
1.664470E-07 1.798301E-24
1.296935E-11
5.133442E-20
TABLE 2
F as a function of the number of interpolants.
¥ 64 128 256 512
0.00 | 2.435081E-02 | 2.435071E-02 | 2.435071E-02 | 2.435071E-02
0.10 | 2.102588E-02 | 2.103165E-02 | 2.103165E-02 | 2.103165E-02
0.50 | 9.506347E-03 | 9.521296E-03 | 9.521296E-03 | 9.521296E-03
0.70 | 5.015357E-03 | 5.029482E-03 | 5.029482E-03 | 5.029482E-03
0.90 | 1.578698E-03 | 1.583581E-03 | 1.583581E-03 | 1.583581E-03
0.99 | 4.785824E-04 | 4.790875E-04 | 4.790875E-04 | 4.790875E-04
TABLE 3
G as a function of the number of interpolants.
¥ 64 128 256 512
0.00 2.435218KE-02 | 2.435071E-02 | 2.435071E-02 | 2.435071E-02
0.10 1.944642E-02 | 1.944358E-02 | 1.944358E-02 | 1.944358E-02
0.50 | 4.398194E-03 | 4.391453E-03 | 4.391454E-03 | 4.391454E-03
0.70 | 4.140576E-04 | 4.068088E-04 | 4.068088E-04 | 4.068088E-04
0.90 | -7.622961E-04 | -7.658048E-04 | -7.658048E-04 | -7.658048E-04
0.99 | -4.403099E-04 | -4.407939E-04 | -4.407939E-04 | -4.407939E-04

19

Consideration of the symbol ¢(k, ) suggests that this should indeed be the case for
all v # 0. In this respect, the Fourier transform of the solitary waves discussed here
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FIGURE 8. Fourier spectra of the solution for v = 0.85. The lower curve corresponds to the

N = 32 case, while the upper curve was computed using N = 64, N = 128, and N = 256. Dots show
the location of the calculated discrete spectral points.

resembles the explicit spectral function (/;(k) = me ¥ of the solitary-wave solution
d(X) = ﬁ of the Benjamin-Ono equation.
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FicURE 9. Portion of the spectra as a function of v, N = 512. Solid: v = 0.99, dashed:
v = 0.98, dotted: v = 0.97.
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TABLE 4
Location of the zeros of ¢(X,~) with v = 0.99, computed
using N = 2048, displayed consecutively from left to right and top to bottom. The
intervals between consecutive zeros, multiplied by 100, appear in parentheses.

1.33E-02 (2.59)

3.92E-02 (2.56)

6.49E-02 (2.60)

9.09E-02 (2.54)

1.164E-01 (2.61)

1.425E-01 (2.54)

1.679E-01 (2.61) | 1.94E-01 (2.53) | 2.193E-01 (2.64)
2.457E-01 (2.50) | 2.707E-01 (2.60) | 2.975E-01(2.43)
3.218E-01 (2.78) | 3.496E-01 (2.29) | 3.725E-01 (3.05)
4.028E-01 (1.91) 4.221E-01

In [8] Benjamin derived a formal asymptotic estimate for ¢(X) for large X. For
~ near 1, he obtained
27
1—~2

(18)  6(X) ~ —4Ky/X?* + [F(y1)] exp(=v/1 = 72 X) cos[y X +arg(f(y1))]

as X — oo, where K is a constant and f is a function of the pole y; = v + /1 — 72
of 1/(1— 2v|k|+ k?). The second term on the right-hand side of the above expression
decays exponentially as X — oo, whereas the first term decays only algebraically,
so that for very large values of X, the first term will dominate the second. As ~
approaches 1, however, the coefficient 27/(1 — %) of the second term will be much
larger than the coeflicient of the first term, while the factor of y/1 — 4% within the
exponential will become small, so that the second term will dominate the first term over
an ever-increasing range of values of X. Within this range, according to Benjamin’s
asymptotic expression (18), the zeros of ¢(X) will be near the zeros of cos(yX), and
hence will be spaced at intervals of length approximately 7 /7.

Our numerical approximations of ¢(X) conform to the above predictions. Figures
3 and 4 show that the range of values of X over which ¢(X,v) exhibits oscillatory
behavior increases as v approaches 1, and that within this range the zeros of ¢(X, )
are fairly evenly spaced. To compare the spacing between the zeros with the value
7 /7 predicted by Benjamin’s estimate, we considered an approximate solution ¢(X, )
with v = 0.99, computed with N = 2048. A total of 17 zeros were found on either side
of the X = 0 axis. Since linear interpolation was used between the 2048 data points,
the location of these zeros carries an uncertainty of approximately +2.44 - 10~ In
the scaling used here, for v = 0.99, Benjamin’s estimate predicts a spacing between
the zeros of z* = X\/2y = 2.5758 - 1072, Table 4 lists the location Z of the zeros and
the intervals z between them for X > 0. The computed values of z show adequate
agreement with z*. Note that the deviation of z from z* for the largest values of 7 is
consistent with Benjamin’s estimate. Since the largest values of Z occur in a region
where the two terms in the estimate are nearly in balance, one would not expect their
spacing to be determined by the second term alone.

It deserves remark that the formal asymptotic derived in [8] and displayed in (18)
is different from Benjamin’s conclusion on the same topic in [7]. In the latter reference,
Benjamin asserted the solitary-wave solutions of his equation decayed exponentially
and oscillated infinitely often. Certainly, a solitary-wave solution ¢ of (1) cannot
decay exponentially since then, by the Paley-Wiener Theorem, its Fourier transform
q/; would be analytic, so infinitely differentiable, and indeed all its derivatives would lie
in L%(IR). This conclusion is not compatible with the singular aspect of the dispersion
¢p in (3). The matter has been rigorously settled in a recent paper of Chen and Bona
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[15] using the decay results of Li and Bona [23], [12]. In [15], it is shown that
lim X%¢(X)=D,

r—Foo
where D is a non-zero constant. This is consistent with the formalism in (18) and
implies that ¢ must feature at most finitely many oscillations.

5 CONCLUDING REMARKS

In this study, three themes were pursued in the context of Benjamin’s equation
for the approximation of internal waves in certain two-fluid systems where the effects
of surface tension cannot be ignored. First, a reappraisal of the derivation of the
equation is given with an eye toward better understanding the circumstances under
which the equation might be expected to provide physically relevant information. Sec-
ond, an exact analysis of solitary-wave solutions is provided via the Implicit Function
Theorem. The analysis is so organized that information about the stability is also ob-
tained. Finally, the Contraction Mapping Principle underlying the proof of existence
of solitary waves 1s used as the basis of a continuation-type algorithm. This algorithm
is implemented as a computer code which is used to obtain numerically generated
approximations of these solitary waves.

Analysis of the Benjamin equation in its context as a model for waves in cer-
tain two-fluid systems reveals there are ranges of the physical parameters for which
the model’s predictions might be relevant to waves seen in the laboratory or natural
settings. It must be acknowledged, however, that the range in question is somewhat
narrow. As a next step, it would be useful to construct a reliable numerical scheme
for the time-dependent problem (1)!. The outcome of an organized set of simulations
might well suggest aspects to look for in an experimental situation.

Previous experience with nonlinear, dispersive wave equations of the form de-
picted in (10) (with [ = 0, say) indicates that solitary-wave solutions may play an
important role in the long-time evolution of general disturbances. In consequence,
we endeavored here to understand these traveling-wave solutions in some detail. The
form of these solitary waves varies with the parameter v = %a/\/C'_, where ' 1s the
difference between the solitary-wave speed and the speed ¢ of infinitesimal waves of
extreme length, and « and 3 are measures of the strengths of the competing dispersive
effects (the parameter « is related to finite-depth effects whilst non-zero values of 3
are due to surface-tension effects). In a given setting, it is possible to cover the entire
range 0 < v < 1 by appropriate choices of the speed ¢p(1 — C') of the solitary wave.
Values of v near 0 correspond to traveling waves with large, negative phase velocities,
however, and these lie outside the range where the equation is expected to be a valid
model. Also, the results of Section 4 suggest that solitary waves corresponding to
values of ¥ near 1 will have small amplitudes, making them hard to discern. When ~
is order p or greater, and is not too close to 1, the corresponding solitary waves travel
to the right, and are potentially observable.

It is worth noting that the stability theory developed in Section 3 applies to
the Benjamin equation only for values of v near 0. The general stability theory for
solitary-wave solutions of equations of the form depicted in (10) (cf. [2]) does not apply
directly to the Benjamin equation. The problem of extending the stability theory

1 A time-dependent algorithm using a split-step method [20] based on Fourier projection for
the linear terms alternated with a conservative second-order approximation for the advective terms
is being developed.
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to encompass the physically relevant regime is currently under study. In addition
to an analytical approach, we expect to use the aforementioned computer code for
approximating solutions of the time-dependent problem (1) to investigate stability via
a coordinated set of numerical simulations with initial data corresponding to perturbed
solitary waves.

The continuation method developed in Section 4 for the approximation of solitary-
wave solutions of the Benjamin equation appears capable of producing traveling wave
solutions over the entire range of v. Another use of a time-dependent numerical inte-
grator would be to check directly how closely the computed solitary waves correspond
to traveling waves. Once this is settled satisfactorily, natural further questions include
determining the outcome of interactions of solitary waves and whether or not general
initial disturbances feature solitary waves in their long-time asymptotics. The results
of Vanden-Broeck and Dias (c¢f. [27]) on a free-surface problem similar to the one con-
sidered here suggest that other branches of solitary-wave solutions to the Benjamin
equation may exist besides the one on which our computed solutions lie. Numerical
experiments like those described above may disclose whether such solutions exist and
play a role in general solutions of the initial-value problem for the Benjamin equation.
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