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Abstract� Considered here is a model equation put forward by Benjamin that governs ap�
proximately the evolution of waves on the interface of a two��uid system in which surface tension
e�ects cannot be ignored� Our principal focus is the traveling�wave solutions called solitary waves�
and three aspects will be investigated� A constructive proof of the existence of these waves together
with a proof of their stability is developed� Continuation methods are used to generate a scheme
capable of numerically approximating these solitary waves� The computer�generated approximations
reveal detailed aspects of the structure of these waves� They are symmetric about their crests� but
unlike the classical Korteweg�de Vries solitary waves� they feature a �nite number of oscillations� The
derivation of the equation is also revisited to get an idea of whether or not these oscillatory waves
might actually occur in a natural setting�
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� Introduction

This paper was inspired by recent work of Benjamin ����� ���� concerning waves on
the interface of a two	
uid system� Benjamin was concerned with an incompressible
system that� at rest� consists of a layer of depth h� of light 
uid of density �� bounded
above by a rigid plane and resting upon a layer of heavier 
uid of density �� � �� of
depth h�� also resting on a rigid plane� Because of the density di�erence� waves can
propagate along the interface between the two 
uids� In Benjamin
s theory� di�usiv	
ity is ignored� but the parameters of the system are such that capillarity cannot be
discarded�

Benjamin focused attention upon waves that do not vary with the coordinate
perpendicular to the principal direction of propagation� The waves in question are
thus assumed to propagate in only one direction� the positive x direction� say� and to
have long wavelength � and small amplitude a relative to h�� The small parameters
� � a

h�
and � � h�

� are supposed to be of the same order of magnitude� so that
nonlinear and dispersive e�ects are balanced� Furthermore� the lower layer is assumed
to be very deep relative to the upper layer� so that � � h�

h�
is large�

The coordinate system is chosen so that� at rest� the interface is located at z � ��
Thus� the upper bounding plane is located at z � h� and the lower plane at z � �h��
Let ��x	 t� denote the downward vertical displacement of the interface from its rest
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position at the horizontal coordinate x at time t �so that positive values of � correspond
to depressions of the interface�� When the variables are suitably non	dimensionalized
�see Section � below�� the equation derived by Benjamin takes the form

��� �t � c� ��x � �r��x � 
L�x � ��xxx� � �	

where the subscripts denote partial di�erentiation� The coe�cients in ��� are given
by

c� �

r
�� � ��
��

	 r �
�a

�h�
	


 �
h���
����

	 � �
T

�g����� � ���
	

where T is the interfacial surface tension and g is the gravity constant� The operator
L � H�x is the composition of the Hilbert transform H and the spatial derivative� A
Fourier multiplier operator with symbol jkj� L �rst arose in the context of nonlinear�
dispersive wave propagation in the studies ��� and ���� on internal waves in deep water
�see also ������

Benjamin pointed out that the functionals

F ��� �

Z �

��

�

�
��dx and G��� �

Z �

��

�
�

�
r�� � �

�

�L� �

�

�
���x

�
dx

are constants of the motion for Eq� ���� that is� if � is a smooth solution of Eq� ���
that vanishes suitably at x � ��� then F ��� and G��� are independent of t� being
determined by their initial values at t � �� say� Note that F �G is a Hamiltonian for
Eq� ����

For 
 � �� Eq� ��� has the form of the Korteweg	de Vries equation �KdV equation
henceforth�� while for � � �� the form is that of the Benjamin	Ono equation� In fact�
the signs of the third and fourth terms on the left	hand side of Eq� ��� are such that
the KdV	type dispersion relation arising from the fourth term competes against the
Benjamin	Ono	type dispersion relation arising from the third term� To see this more
clearly� consider the linearized initial	value problem

�t � c� ��x � 
L�x � ��xxx� � �	

��x	 �� � f�x�	���

posed for x � R and t � �� The formal solution of Eq� ��� is

��x	 t� �
�

�


Z �

��

eik�x�cB�k�t� �f�k�dk	

where �f denotes the Fourier transform of f and the function cB�k�� known as the
dispersion relation for Eq� ���� is given by

��� cB�k� � cB�k�
	 �� � c���� 
jkj� �k���

The KdV dispersion term �k� and the Benjamin	Ono dispersion term 
jkj have
opposite signs in Eq� ���� and are comparable in size when jkj is near km � 
���� the
value of jkj at which cB takes its minimum cm � c��� � 
������ Figure � shows the
behavior of cB�k� near k � � for various values of 
 when � � � and c� � ��

Notice that the dispersion relation has a discontinuous �rst derivative at k � �
for 
 � �� and that the value of cm will be positive as long as 
���� � �� According
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Figure �� Dispersion relation cB�k����� with � � 
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to Benjamin
s commentary� Eq� ��� should be physically relevant when 
���� is com	
parable in size to �� so that �c� � cm��c� is comparable to �� and km is comparable
to ��
 which is of order �� It follows that for values of k near km the contributions of
the KdV and Benjamin	Ono terms to the dispersion relation are of similar magnitude
and are oppositely directed� The question of the relative sizes of these two dispersive
terms will be discussed at more length in Section ��

In this paper� attention is focused on solitary	wave solutions of Eq� ���� which are
solutions of the form

��x	 t� � ��x � c����C�t�	

where ��X� and its derivatives tend to zero as the variable X � x � c��� � C�t
approaches ��� The dimensionless variable C represents the relative decrease in the
speed of the solitary wave from the speed c� of very long	wavelength solutions of the
linearized Eq� ���� Substituting this form for � into Eq� ��� and integrating once with
respect to X yields the equation

C�� 
L�� ���� � r�� � �	

which� after transforming the dependent variable to

��� ��X� �
�r
C

�

�r
�

C
X

�
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can be rewritten as

��� Q��	 �� � �� ��L�� ��� � �� � �	

where

� �



�
p
�C

�

Thus� possible solitary	wave solutions of Eq� ��� are solutions of the family of equations
Eq� ���� indexed by the parameter �� Since the assumptions underlying the derivation
of Eq� ��� imply that C is a small number� of size comparable to �c� � cm��c� �
� � 
����� it follows that in the regime of physical parameters for which Benjamin
s
equation is relevant� � should be an order	one quantity�

The questions of existence� asymptotics� and stability of solitary	wave solutions
of ��� were studied by Benjamin in ��� and ���� Using the degree	theoretic approach
of ���� he showed that for each value of � in the range ��	 ��� Eq� ��� has a solution
� � �� which is an even function of X with

����� � max
X�R

���X� � ��

Notice that� according to the transformation in Eq� ���� such a �� corresponds to a
wave motion for which the interface is de
ected upwards at the point of maximum
de
ection� In this respect� the solitary	wave solutions of Eq� ��� di�er from Benjamin	
Ono	type solitary waves� which in the 
uid system considered here would correspond
to downward de
ections of the interface� Also� the condition � � � � � means that the
dimensional wave speed of the solitary wave lies in the range �� � c���� C� � cm�
In particular� values of � near zero correspond to large negative wave speeds� and thus
to solutions of questionable physical relevance�

Benjamin also provided some formal asymptotics suggesting that� for each �xed
value of �� there is a bounded range of values ofX in which the solitary wave ���X� will
oscillate between positive and negative values� and that outside this bounded region�
j���X�j should decay monotonically like ��jXj�� Finally� he sketched a perturbation	
theoretic approach to a proof of existence of a branch of solutions of Eq� ���� de�ned
for � near �� which correspond to stable solutions of the initial	value problem for
Eq� ����

The plan of this paper is as follows� In Section � we determine more precisely the
range of parameters for which Eq� ��� is a good approximation to the more general
equations from which it was derived� This aspect bears crucially on whether these
waves are realizable in the laboratory or can be expected to occur in nature� In
Section �� we present a complete theory of existence and stability of solitary	wave
solutions corresponding to values of � near �� in fact this result will appear as a
special case of a general result on perturbations of solitary	wave solutions of nonlinear
dispersive wave equations� Our argument is based on the Implicit Function Theorem�
and yields an analytic dependence of solitary waves on the parameter �� Section � is
devoted to explaining an algorithm for the approximation of solitary	wave solutions�
The algorithm is a continuation method based on the Contraction Mapping Principle
that underlies the proof of existence made via the Implicit Function Theorem� We
then present some numerical approximations of solitary	wave solutions of Benjamin
s
equation using a computer code based on this algorithm� The output graphically
reveals aspects of the structure of the solitary	wave solutions of Eq� ���� The paper
concludes with a summary and further discussion in Section ��
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� Physical Regime of Validity of Benjamin�s Equation

In this section we examine the conditions under which the dispersion relation
appearing in Benjamin
s equation is a valid approximation to the dispersion relation
induced by a more general system of equations for internal waves in a two	
uid system�
Some general conclusions are drawn as to the types of 
uids and con�gurations for
which Benjamin
s equation may be relevant as a model� and for which solitary waves
of the type considered in Sections � and � below might be observed�

Consider two incompressible 
uids� each of constant density� contained between
rigid horizontal planes� with the lighter of the two 
uids resting in a layer of nearly
uniform depth atop a layer of the heavier 
uid� also nearly uniform in depth� Ideally�
the 
uids are non	dissipative� but for real 
uids we require that the Reynolds num	
ber induced by the dynamics under consideration be large� We also ignore possible
di�usive e�ects across the interface that would lead to nonhomogeneous layers� It is
assumed that the balance of pressure on either side of the interface is proportional
to the curvature of the interface� The only external force acting upon the system is
that of gravity� The 
ow is assumed to be irrotational �within each of the layers of

uid� and is two	dimensional in the sense that the 
ow variables depend only on a
horizontal coordinate x� the vertical coordinate z� and the time variable t�

The equations that govern the dynamics of the two	
uid system just described
are well known �see ���� and references contained therein�� In the interior of each 
uid
layer� the laws of conservation of mass and momentum imply the equations

�ixx � �izz � � �i � �	 ��

and

�i

�
�it �

�

�
��ix�� �

�

�
��iz�

� � gz

�
� �pi �i � �	 ���

Here g is the gravitational acceleration� i � � connotes the upper layer and i � �
the lower layer� and the 
uid variables within each layer are the velocity potentials
�i�x	 z	 t�� the pressures pi�x	 z	 t�� and the densities �i� The boundary planes� which
are located at z � h� and z � �h�� are rigid and impermeable� so that

��z � � at z � h�

and

��z � � at z � �h��
At the interface z � ��x	 t� �which is located at z � � when the system is undisturbed��
one has the kinematic conditions

�t � �iz � �ix�x � � �i � �	 ��

and

p� � p� � �T�xx	
where T denotes the interfacial surface tension� In the latter equation� �xx is a good
approximation to the curvature of the interface provided the slope �x is small�

As in Section �� we assume that � � a�h� and � � h��� are small� where a is a
typical amplitude and � a typical wavelength of the interfacial waves being modeled�
To make explicit the e�ects of this assumption� we non	dimensionalize the variables
in the above equations� so that the rescaled variables and their derivatives have values



� john p� albert� jerry l� bona� and juan mario restrepo

on the order of unity� and small terms will be identi�ed by the presence of factors of
� or �� The rescaled independent variables �marked by tildes� are

�x �
x

�
	 �t �

vt

�
	 �z� �

z

h�
	 �z� �

z

h�
	

where v denotes
p
gh� and z is rescaled to �z� at points above the interface and to �z�

at points below the interface� The dependent variables are rescaled as

�pi �
pi
��v�

	 �� �
�

a
	 ��i �

v�i
g�a

�

If the equations of motion are written in the non	dimensionalized variables� and
then linearized by omitting terms of higher order in �� the resulting equations will
have sinusoidal solutions of the form

�i�x	 zi	 t� � Ai�k	 zi�e
ik�x�ct� �i � �	 ��	

pi�x	 zi	 t� � Bi�k	 zi�e
ik�x�ct� �i � �	 ��	

��x	 t� � C�k�eik�x�ct�	

where k is an arbitrary real number� �Here and henceforth� tildes have been dropped
from the variables for ease of reading�� The linearized equations of motion determine
not only the forms of the functions Ai� Bi� and C� but also the dispersion relation

c��k� �
� �� � B��k��

�� � � ��k coth���k� � �k coth��k�
	

in which the in
uence of the physical con�guration of the system is manifested only
through the dimensionless quantities

� � h��h�	

� � ������� � �	

and

B �
T

��� � ���gh��
�

The parameter B plays a role in the present problem analogous to that of the Bond
number in the theory of surface waves�

To obtain conditions for the validity of Benjamin
s equation� we now determine
when the function c�k� may be approximated by a function of the form appearing in
Eq� ��� above�

When � � �� is large enough that coth��� � �� and jkj is not too small� the
function c��k� is approximately equal to

��� c�a�k� �
� �� �B��k��

�� � � ��jkj� �k coth��k�
�

An expansion of the denominator of Eq� ��� with respect to the small parameter �
yields

ca�k� �
p
�
�
� � B��k�

���� �
�� �

�
�� � � �jkj��

�
�

�
�� � � �� � �

�

	
k��� � O����

�
�

The approximation which results in the Benjamin equation now proceeds on the as	
sumption that the combination B��� which we henceforth denote by �� is a small
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parameter� Indeed� � and � are related to the parameters 
 and � introduced in
Section � by


 �
��� � � �

�
and � �

�

�
�

and therefore� if � is not too large� Benjamin
s assumption that 
���� � O��� corre	
sponds to the assumption that � � O���� For the moment� however� we simply treat
� as a small parameter without comparing its size to that of �� Then an expansion of
ca�k� through quadratic order in both � and � yields the expression

ca�k� �
p
�

�
�� �

�
�� � � �jkj��

�

�
k�� �

�
�

�
�� � � �� � �

�

	
k���

��� ��

�
�� � � �k�jkj�� � �

�
k��� �O���	 ���	 ���	 ���

�
�

�A minor error in Eq� ����� of ��� has been corrected here��
In the present scaling� the wavenumbers k of interest will have absolute values

on the order of unity� Therefore the terms on the right	hand side of Eq� ��� can be
ordered according to the size of the numbers �� � � �� and �� One way to arrive at an
approximate dispersion relation of the form appearing in Eq� ��� is to assume that

��� �� � � ���� 	 ��

Then� to �rst order in �� � � ��� the function ca�k� can be approximated by

cb�k� �
p
�

�
�� �

�
�� � � �jkj��

�

�
k��

�
	

which is the same form as that obtained by Benjamin�
To verify the validity of the above formal arguments� and to obtain an idea of the

sizes of the error terms in the approximations� the relative error

cb�k�� c�k�

c�k�

was plotted against k for various values of the parameters �� �� � and � � A typical
plot is shown in Figure �a� where k and � vary over the ranges �� 
 k 
 � and
� 
 � 
 ����� while � � ���� � � ���� and � � ���� are held constant� The relative
error is small for small values of �� and stays below ��� even for values of � up to
unity� The ridge down the middle of the surface� which persists up to the point where
� � � and k � �� is due to the error of replacing coth��k� by sgn k� which was made
in passing from c�k� to the approximation ca�k� in Eq� ���� Here � � �� and coth��k�
will not be close to sgn k for jkj less than about ���� yet the overall approximation
remains accurate� As can be seen from Figure �b� even reducing � to � � ��� only
slightly magni�es the error� In Figure �c� � varies over the range � 
 � 
 ��� while
� � ����� � � ���� and � � � are held constant� Comparison with Figure �a shows
that the relative error is more sensitive to � than it is to �� although it is within a
reasonable range for � between � and ����� Finally� Figure �d �in which � � ����
� � ����� and � � ���� are held constant� shows that the relative error increases only
slowly with � in the range � 
 � 
 � and beyond� In general� cb�k� will be a good
approximation to c�k� over the range jkj 
 � provided � and � are small� � is not too
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c
� for �a� � � ����� � � ���� � � �� �b� � � ����� � � ����

� � ���� �c� 	 � ����� � � ���� � � �� �d� � � ����� 	 � ����� � � ��

small� and � is not too large� When � � � and � 
 ���� for example� the relative error
of the approximation is less than �� for � 
 � 
 ��� and � 
 � 
 �����

The computations just described show that condition ��� is not necessary for the
validity of Benjamin
s approximation to the dispersion relation� However� when ��� is
violated� � is small enough that the contribution of the term �

�k
�� to the right	hand

side of cb�k� is no more signi�cant than the contribution of the O��� � � ����� term
in Eq� ���� so that the Benjamin dispersion relation is no better an approximation of
c�k� than is the Benjamin	Ono dispersion relation

cBO�k� �
p
�

�
�� �

�
�� � � �jkj�

�
�
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Furthermore� if ��� is violated� then the solitary	wave parameter

� �



�
p
�C

�
�� � � ��p

��C

will not be less than � unless C is on the order of unity or greater� The condition
� � � is necessary for the existence of the solitary waves studied below in Sections
� and �� But� as mentioned in Section �� solitary	wave solutions of physical interest
should correspond to values of C on the order of �� or in other words to values of C
much less than unity� Therefore ��� is a necessary condition for the physical relevance
of the solitary	wave solutions considered in Sections � and ��

To summarize the foregoing� cb is a good approximation to c when � � �� � ��
� 
 �� � �� � 	 �� and � 	 �� Furthermore� if solitary waves of the type studied
below in Sections � and � are to exist and be consistent with the assumptions made
in deriving the Benjamin equation� then condition ��� should also be satis�ed�

We conclude with a brief discussion of the experimental implications of the above
conditions� In a laboratory setting� the requirement that � 	 � could be met either
by making the upper layer very thin or by creating waves with long length scales�
If h� is small� however� then the Reynolds number R � vh��� �in which v �

p
gh�

and � is a measure of a mechanism such as dynamic viscosity which attenuates the
waves� will not be large� Hence attenuation will play a signi�cant role in the dynamics
of the system� and the inviscid equation ��� will not be an accurate model even on
short time scales� Thus in a laboratory experiment for testing the predictions of
Eq� ���� the upper layer should not be made extremely thin� and disturbances with
long wavelengths relative to the upper layer should be created� On the other hand�
the requirement that � 	 � and � � �� � �� combine to imply that h�

h�
� ���� � ��

so that the lower layer will have to be fairly deep�
The requirement � 	 �� or in other words�

B�� 	 �	

is satis�ed in any con�guration of two 
uids if the waves under consideration are long
enough so that � � h��� is su�ciently small� On the other hand� the requirement in
condition ���� which can be written as

�� � � �� 	 B	

is independent of the wave parameter � and so represents a restriction on the allowable
con�gurations of the system� Indeed� when one takes into account that the 
uid depth
h� should not be too small� the restriction becomes fairly severe� If� for example�
�� � �� � ���� g�cm� and h� is to be greater than � cm� then ��� will hold only if the
surface tension T � measured in dyne�cm� satis�es T��� � � a condition that would
not be easy to meet in the laboratory�

� Existence and Stability of Solitary�Wave Solutions

At issue in this section is the mathematical question of existence of solitary	wave
solutions ��x	 t� � ��x � c��� � C�t� of Eq� ��� for small values of the parameter
� � 
���

p
�C�� If these waves exist� their physical relevance comes into question�

and thus their stability is also within the purview of an initial inquiry� For � � ��



�� john p� albert� jerry l� bona� and juan mario restrepo

existence is provided by the exact formula

��x	 t� � ��C

r
sech�



�

�

s
C

�
�x� c����C�t�

�
	

and stability was settled a�rmatively some time ago �see ���� ���� ������ In ���� Ben	
jamin presented a degree	theoretic proof of existence of solitary waves correspond	
ing to all values of � in the range � 
 � � � �An alternative proof based on the
Concentrated	Compactness Principle has been worked out in ������ Benjamin also
outlined an argument� based on the Implicit Function Theorem for proving existence
of solitary waves when � is small� The aim of this section is to complete and generalize
the latter argument� Although limited to the case of small �� it has several advantages
over the degree	theoretic approach� First� it is constructive in nature� and leads nat	
urally to the method used below in Section � to compute solitary waves numerically
for all values of � in ��	 ��� Secondly� the arguments used here yield not only the
existence of a branch of solitary waves for an interval of positive values of �� but also
the continuity and in fact the analyticity of this branch with respect to �� This in
turn makes it possible to establish such properties as the stability of the solitary waves
with regard to small perturbations of the wave pro�le� when considered as solutions
of the time	dependent equation� In what follows� let Hr�R� be the Sobolev space of
functions q which satisfy

kqk�r �

Z
R

�� � k��rjbq�k�j� dk ���

For any pair of Banach spaces X and Y � let B�X	Y � be the space of bounded operators
from X to Y with the operator norm�

Consider a general class of equations of the form

���� ut � �f�u� � lg�u��x � �M � lS�ux � �	

where f  R� R� g  R� R� and M and S are Fourier multiplier operators de�ned
by dMv�k� � ��k�bv�k�

and cSv�k� � ��k�bv�k��

We make the following assumptions�

�A�� The functions ��k� and ��k� are measurable and even� and ��k� is non	
negative�

�A�� There exists a number s � � and positive constants B�� B�� and B� such
that� for all su�ciently large values of k� B�jkjs 
 ��k� 
 B�jkjs and j��k�j 

B�jkjs�

�A�� The functions f and g are smooth� and f��� � g��� � ��

A solitary	wave solution of Eq� ���� is a solution of the form !u�x	 t� � ��x�Ct��
where C � � is the wave speed and � is a localized function� which is to say that
��y� � � as y � �� at least at an algebraic rate� We say that such a solution is
�orbitally� stable� with respect to a given norm� if the distance between a solution
u�x	 t� of Eq� ���� and the orbit f!u�
	 t�  t � �g remains arbitrarily small in norm for
all time� provided only that u�x	 �� is close enough in norm to !u�x	 ���
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The present	day theory of stability of solitary waves dates back to the paper of
Benjamin ��� as corrected in ����� and has undergone considerable development since
then �cf� ���� ����� ����� ������ Here we employ the criterion for stability set forth in
����� De�ne the operator L  L��R�� L��R� by

���� L � C �M � lS � f ���� � lg����	

where C� f ����� and g����� are viewed as multiplication operators� According to
Theorem ��� and the proof of Lemma ��� of ����� the solitary wave !u�x	 t� � ��x�Ct�
will be stable with respect to the Hs��	Sobolev norm provided that the following two
conditions on L are met 

�C�� when viewed as an operator on L��R� with domainHs� L is self	adjoint� with
one simple negative eigenvalue� a simple eigenvalue at zero� and no other part
of its spectrum on the non	positive real axis� and

�C�� there exists � � L��R� such that L��� � � and
R�
��

��x���x� dx � ��

We now make a �nal assumption about Eq� �����

�A�� For l � �� Eq� ���� has a solitary	wave solution u�x	 t� � ���x �Ct�� where
C � � and ���x� is a smooth� even function which belongs� together with all
its derivatives� to the space L��R�� Moreover� the operator L� associated to
�� via Eq� ���� satis�es conditions �C�� and �C�� above�

It will now be shown that assumptions �A�� through �A�� imply the existence
of an analytic map l �� �l� de�ned for l in a neighborhood of l � � and taking
values in L��R�� such that for each l� the function u�x	 t� � �l�x � Ct� is a stable�
solitary	wave solution of Eq� ����� The proof of this assertion proceeds via the Implicit
Function Theorem and relies on the classical perturbation theory of linear operators
as expounded in Kato
s book ����� It is straightforward in outline� but not all the
details are simple�

For r � �� let Hr
e denote the closed subspace of all even functions in Hr�R��

"From assumption �A�� it follows that there exist positive constants l�� B� and B�
such that for all l � ��l�	 l�� and for jkj su�ciently large� one has

���� B��� � k��s�� 
 C � ��k� � l��k� 
 B��� � k��s���

In consequence� the function C � ��k� � l��k� de�nes a multiplication operator M on
the space fbq  q � H�

eg whose maximal domain is the space fbq  q � H�	s
e g� Since

maximal multiplication operators are self	adjoint� and the operator C � M � lS is
unitarily equivalent to M via the Fourier transform� then C � M � lS is self	adjoint
on H�

e with domain H�	s
e � It is straightforward to adduce that for small enough l� the

spectrum of the operator M� and hence the operator C � M � lS� is a subset of an
interval of the form �b	���� b � �� and is comprised of continuous spectrum�

Let � denote any function in H�
e � and de�ne the multiplication operator Q on H�

e

by Q� � �f ���� � lg������� Since f ���� � H�
e � g���� � H�

e � and H�
e is an algebra� it

follows that Q is a bounded operator on H�
e � Hence� by Theorem V#��� of ����� the

operator C � M � lS � Q is self	adjoint on H�
e with domain H�	s

e � Moreover� Q is
relatively compact with respect to C �M � lS �this may be veri�ed� for example� by
using the argument in the proof of Lemma ���� of ��� together with the fact thatZ

jxj�R

jf ���� � lg����j� dx and

Z
jxj�R

j��f ������ � lg������j� dx
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tend to zero as R � ��� Hence� as in Theorem V#��� of ����� it follows that the
spectrum of L consists of a continuous spectrum� identical to that of C � M � lS�
together with a �nite number of real eigenvalues of �nite multiplicity�

Let I � ��l�	 l��� and de�ne a map F  I �H�	s
e � H�

e by

F �l	 �� � �C �M � lS���� � f��� � lg����

A calculation shows that the Fr$echet derivative F� �
�F

��
exists on I � H�	s

e and is

de�ned as a map from I �H�	s
e to B�H�	s

e 	H�
e � by

F��l	 �� � C �M � lS � Q�

"From hypothesis �A��� it follows that F ��	��� � � and that the operator L� �
F
��	��� has a one	dimensional nullspace N in L��R�� Upon substituting u�x	 t� �
���x � Ct� in Eq� ���� and di�erentiating once with respect to x� one �nds that
L������ � �� whence ��� � N � Since ��� is odd� it is not a member of H�	s

e � and it
follows that L�  H�	s

e � H�
e is invertible� Finally� since L and M map H�	s

e into
H�
e boundedly and the maps � �� f��� � lg��� and � �� f ���� � lg���� are continuous

maps from H�
e into itself� then F and F� are continuous maps from I � H�	s

e into
their respective target spaces H�

e and B�H�	s
e 	H�

e �� Hence all the conditions of the
Implicit Function Theorem �see ����� Theorem ����� are met� and it may be concluded
that there exist a number l� � � and a continuous map l �� �l from ��l�	 l�� to H�	s

e

such that F �l	�l� � � for all l � ��l�	 l��� Indeed� since F �l	�� depends analytically
on l� the map l �� �l is analytic as well�

The existence of the desired family of solitary	wave solutions of Eq� ���� has now
been demonstrated� and it remains to prove that these solitary waves are stable� at
least when l is su�ciently near zero� Consider the map

l �� Ll � F
�l	�l�	

which is de�ned on the interval ��l�	 l�� and takes values in the space C of closed
operators on L��R�� For l� l� in ��l�	 l��� it follows from Eq� ���� that

k�C � M � lS�����C � M � l�S���kB�L��L�� �

sup
k�R

j�C � ��k� � l��k���� � �C � ��k� � l���k����j


 jl � l�j sup
k�R

�
�B��l���� � k��s��

B��� � k��s

	
�

Hence �C �M � lS��� tends to �C�M � l�S��� in the norm of the space of bounded
operators on L��R� as l approaches l�� Therefore� by Theorems IV#���� and IV#����
of ����� Ll varies continuously with l in the topology of generalized convergence on
C� Hence the results of section IV#� of ���� imply that the eigenvalues of Ll depend
continuously on l� In particular� since the function ��l is an eigenfunction of Ll with
eigenvalue �� one obtains that the condition �C�� holds for all l su�ciently near zero�
Also� for these values of l� � is not an eigenvalue of Ll in H�

e � and therefore by Theorem
IV#���� of ����� the operator L��l varies continuously with l in B�L�e	 L

�
e�� Hence the

map l �� L��l ��l� is a continuous L�e	valued map for l in some neighborhood of zero�
and so the condition �C�� holds for these values of l� This is enough to conclude� by
the theory put forward in ����� that the corresponding solitary waves �l are stable�
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To apply the above theory to the Benjamin equation� �rst make the change of
variables u�x	 t� � ��x� t	�t�c��� reducing Eq� ��� to

ut � �ruux � 
Lux � �uxxx � �	

which has the form of Eq� ���� with f�u� � �ru�� g�u� � �� ��k� � �k�� ��k� � �jkj�
and l � 
� Assumptions �A�� through �A�� clearly hold in this case� and assumption
�A�� becomes a well	known property of the Schr%odinger operator associated with the
KdV	solitary wave �see ������ Hence� from the general result just expounded� it follows
that for every C � � there exists a number 
� � 
��C� such that� for all 
 � ��
�	 
���
the above equation has a stable solitary	wave solution u�x	 t� � ��x � Ct�� Then
��x	 t� � ��x � c��� � C�t� is a stable solitary	wave solution to Eq� ���� In fact�
using the transformation in Eq� ��� one sees easily that the properties of existence
and stability of solitary	wave solutions of Eq� ��� depend only on � � 
��

p
�C� in

the sense that if 
���
p
��C � 
���

p
��C� then the pro�le function �� of a stable

solitary	wave solution corresponding to 
�� ��� C� is transformed via

�

C�
���

r
��
C�

X� �
�

C�
���

r
��
C�

X�

into the pro�le function �� of a stable solitary	wave solution corresponding to 
�� ���
C�� Hence the number 
� de�ned above can be taken as 
� � ���

p
�C� where �� is

independent of C�
It is also known �see ���� ����� that assumptions �A�� through �A�� are valid if

one takes ��k� � jkj �so that Eq� ���� with l � � is the Benjamin	Ono equation� or if
��k� � k coth kh� ���h�� where h � � �in which case Eq� ���� with l � � is known as
the Intermediate Long	Wave equation�� Therefore the above theory applies� and one
may conclude that existence and stability of solitary waves persists for perturbations
of these equations as well�

� Numerical Approximation of Solitary Waves

��� Description of the Numerical Scheme�

A family of approximate solutions to Eq� ��� was found numerically by starting
from an exact solution at � � � and using a continuation method to reach values
of � near �� Some of these calculated approximations appear in Figures � and � �in
which the spatial domain has been rescaled to unity�� These �gures indicate that the
solitary	wave solutions are symmetric waves which have prominent oscillatory tails
when � is close to �� and whose maximum excursion from the rest state decreases as
� approaches � �see Figure ���

In solving Eq� ���� the variableX was �rst rescaled by multiplication by a factor ��
where � was chosen small enough that the signi�cant support of the rescaled solutions
fell within the compuatational interval ��	 �
�� �In the examples presented here� � �
������� The nonlinear di�erential equation ��� was then recast as a system of algebraic
equations using Fourier methods ����� For an even� positive integer N � denote by
SN the subspace of L���	 �
� spanned by the functions eikX � where k ranges over
�N�� 
 k 
 �N���� �� Let PN  L���	 �
�� SN be the orthogonal projection on SN
in the standard inner product �
	 
� of L���	 �
�� Thus� PN� is the truncated Fourier
series

PN



�X

k���

���k�eikX

�
�

N����X
k��N��

���k���ikX�
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Figure �� Solitary�wave solutions� scaled to the domain ����������� �a� 
 � ����� �b� 
 �
����� �c� 
 � ����� �d� 
 � ����� The vertical scale is the same in all �gures� N � ��
�

of �� where ���k� denotes the kth Fourier coe�cient of ��
Demanding that � � L���	 �
� satisfy PN �Q�PN�	 �� � �� where �Q is the rescaled

version of the operator Q in Eq� ���� yields the system of equations

���� c�k� �����k� � ��� � ����k� � �

for the Fourier coe�cients of �� Here� c�k� �� � � � ��jkj� � ��k� and the discrete

convolution in the second term is de�ned as ��� � ����k� �
P

l
���l����k � l�� where the

sum is taken over all l such that �N�� 
 l 
 �N����� and �N�� 
 k� l 
 �N������
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The nonlinear system ���� may be written compactly as the one	parameter system

���� Y ��	 ���k�� � �	

where Y  ��	 �� � CN � CN � Our approach is to solve Eq� ���� numerically for

the numbers f���k	 ��gN��k��N��� the corresponding function ��X	 �� � SN obtained by
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taking the inverse discrete Fourier transform is then taken to be an approximation
to a solution � of Eq� ���� which is posed on the real line� Although the practice of
numerically approximating solitary waves by periodic functions is fraught with pitfalls
�cf� ����� p� ������ in the present instance the technique appears to be justi�ed� since
solitary waves have been proven to exist and to have decay properties similar to those
exhibited by our numerical solutions �����

Assuming Eq� ���� has a branch of solutions that is continuously di�erentiable
with respect to the parameter �� homotopy methods ���� pp� ���#���� present a
potentially useful method for determining this branch� Such a method uses a known
solution corresponding to a particular value of � as an initial guess in an iterative
procedure which seeks to compute a nearby solution on the branch with a slightly
di�erent value of �� This strategy is bound to succeed if the branch of solutions
does not feature bifurcations or folds� In the case of Eq� ����� approximate solutions
are known for � � �� namely the projections onto SN of solitary	wave solutions to
the KdV equation� Thus it is possible to initiate a parameter	continuation search of
approximations to an entire branch of solutions to Eq� ��� for � 
 � � �� We proceed
now to a description of the speci�c implementation of the general idea just enunciated�

Numerically� solutions of Eq� ���� are approximated by elements ���k	 �� � CN

such that

���� kY ��	 ���k	 ���kl� � r	

where l� is the space of square	summable sequences and the residual r was taken to be
����� for all cases reported in this study� Several values ��j � ��	 �� are chosen for which
the solutions ��X	 ��j � are desired� The set is arranged so that ��j	� � ��j and ��� � ��

The set f��j gJj�� used in this report is listed in Table �� Each segment ���j 	 �
�
j	�� is

divided into Mm equal segments of size &m � ��m&� where & is a number that is
much smaller than the segment
s length and is commensurate with it� The re�nement
level is characterized by m � �	 �	 �	 
 
 
� The discrete values of the parameter in the
segment depend on the re�nement level and are given by

�n � ��j � n&m	 for n � �	 �	 
 
 
 	Mm�

The Newton	Raphson method is used to �nd an approximation ���k	 �n	�� from
���k	 �n�� This requires the solution of the system of equations

���� Jn ���k	 �n	�� � Jn ���k	 �n��An��n	� � �n�	 �N�� 
 k 
 �N��� � �	

for ���k	 ��� where Jn � �Y i�� ���k	 �n� and An � �Y i���n� �N�� 
 i � N��� When

n � Mm� so that �Mm � ��j	�� the set of �� calculated with parameter step size &m

is compared to the previously computed solution� obtained with parameter step size
&m��� This comparison is subjected to the test

���� k��m�k	 ��j	��� ��m���k	 ��j	��kl� � �	

where the tolerance � was set to ����� in all the examples appearing in this study�
Obviously� Eq� ���� is not checked for m � �� If� for a given m� the condition in
Eq� ���� fails� the parameter step size is set to &m	�� leading to a new value Mm	��

and the whole process is started over setting ��m	��k	 �n��� � ���l	 ��j �� The entire

calculation is started using the numbers ���k	 �� obtained from the projection onto SN
of the function �

�sech���� �X � 
��� which is a �rescaled� analytic solution of Eq� ���
corresponding to ��� � ��
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��� Numerical Results�

The calculations were performed using double	precision arithmetic on a DEC	
Alpha ���� machine� The Jacobian matrix was calculated by hand� The solution of
Eq� ���� was found by using standard LINPACK solvers� The iteration history for
a full range of � for N � ���� shown in Table �� attests to the good convergence
characteristics of the Newton	Raphson solver used throughout the calculation� Values
of &m that achieved the required tolerances in reaching each ��j are listed in Table
�� The homotopy stage between � � ��� and � � ��� required the smallest values of
&m to obtain good accuracy� The residual column shows the approximately	quadratic
convergence rate of the Newton Raphson stage of the calculation at those particular
values of &m�

The Jacobian J of Y is invertible� at least for small values of �� We found
in the calculations no evidence of folds or bifurcations on the branch of solutions
corresponding to � � ��	 ��� We monitored the condition number of the Jacobian
each time it was assembled in the Newton	Raphson procedure� The condition number
decreased as � increased and depended on N � Its value was more sensitive to N than
�� and was on the order of ���� to ���� for N � �� and N � ���� respectively�
The condition number was certainly small� but the accuracy of our calculations was
such that we could safely assert it to be non	zero throughout our computations� A
plot of the l�	norm of the solution as a function of the parameter � �see Figure ��
o�ers no indication of branching of solutions� �The �gure is actually a superposition
of the graphs produced with N � ��	 ���	 ���� and ��� Fourier interpolants� and� as is
evident� for any value of �� the l�	norm was substantially the same regardless of N ��
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Figure �� The l	�norm of the solution versus 
� The superposition of the norms computed
with N � 	���
��
�	���
 Fourier interpolants are indistinguishable�

The value of the invariants F and G de�ned in Section � �see below ����� when
evaluated on an approximation to a solitary	wave solution� are listed as a function of
the number of interpolants for several values of � in tables � and �� It is noted that the
invariants do not change in value with N for N � ���� For the values of � discussed
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here� it was found that N � ��� was more than adequate to approximate solutions
� of Benjamin
s equation with tolerances � � ����� and r � ������ Note that the
Hamiltonian F � G is positive in the range of � considered here� The Hamiltonian
decreases with �� reaching very small values as � approaches ��

The key to resolving these particular wave pro�les is capturing the peak in the
Fourier spectra that results from the competition of the dispersion associated with 

and the dispersion associated with �� As shown in Figure �� the bandwidth of the
spectra with signi�cant energy is approximately � 
 jkj 
 ��� �Note that in comparing
the results of this section with the discussion in Section � above� it should be borne
in mind that the wavenumber k in Section � has here been multiplied by a factor
of ����� Attempting to resolve the wave with a smaller bandwidth yields a solution

with a qualitatively di�erent shape� Figure � shows a portion of the spectrum ���k	 ��
computed using the algorithm outlined in Section ��� with � � ����� The upper curve
is the superposition of the spectra computed with N � ��� N � ���� and N � ����
respectively� It was found that the spectra for N � �� superimposes rather well
on the N � �� case� The lower curve represents the spectrum as computed using
N � �� and clearly does not capture the characteristic peak in the wave
s spectrum�
Not surprisingly� the N � �� case did not meet the tolerance associated with the
parameter �� To come to the approximation whose spectrum is displayed in Figure �
using N � ��� this criteria had to be relaxed from � � ����� to � � �����
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Figure 	� Portion of the Fourier spectra as a function of 
� N � ��
�

Figure � shows the energetic portion of the Fourier spectra ���k	 �� for several
values of �� making it clear that the peak of the spectrum moves to higher modes as
� gets larger� and the morphology of the spectrum changes signi�cantly in the region
adjoining the peak for � near �� Furthermore� from the same �gure it is evident that�
at k � �� the spectrum ���k	 �� has a non	zero right	hand derivative� Since ���k	 �� is
an even function in k� it follows that there is a discontinuity in the spectrum at k � ��
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Table �

Residuals in reaching 
� in the Newton�Raphson stage of
the N � 
�	 run� The �m	s quoted in the table correspond to the size of the step

employed to reach 
�j within the error tolerances� Tolerance on the residual was ����
�


� �m Residual 
� �m Residual

���� 
��
�E��
 ��
����
E��� ���� ��
��E��
 ��
�

��E���

�������	E��� ���		
�
E���

����	���E��
 �������
E��


��������E�
� �����


E�
�
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F as a function of the number of interpolants�
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G as a function of the number of interpolants�
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Consideration of the symbol c�k	 �� suggests that this should indeed be the case for
all � �� �� In this respect� the Fourier transform of the solitary waves discussed here
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Figure 
� Fourier spectra of the solution for 
 � ����� The lower curve corresponds to the
N � 

 case� while the upper curve was computed using N � 	�� N � �
�� and N � 
�	� Dots show
the location of the calculated discrete spectral points�

resembles the explicit spectral function ���k� � 
e�jkj of the solitary	wave solution
��X� � �

�	X� of the Benjamin	Ono equation�
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Figure �� Portion of the spectra as a function of 
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Table �

Location of the zeros of ��X�
� with 
 � ����� computed
using N � 
���� displayed consecutively from left to right and top to bottom� The

intervals between consecutive zeros� multiplied by ���� appear in parentheses�

��

E��
 �
���� 
��
E��
 �
��	� 	���E��
 �
�	��

����E��
 �
���� ���	�E��� �
�	�� ���
�E��� �
����

��	��E��� �
�	�� ����E��� �
��
� 
���
E��� �
�	��


����E��� �
���� 
����E��� �
�	�� 
����E����
��
�


�
��E��� �
���� 
���	E��� �
�
�� 
��
�E��� �
����

���
�E��� ������ ��

�E���

In ��� Benjamin derived a formal asymptotic estimate for ��X� for large X� For
� near �� he obtained

���� ��X� � ��K��X� �
�


�� ��
jf�y��j exp��

p
�� ��X� cos��X � arg�f�y����

as X ��� where K is a constant and f is a function of the pole y� � � � i
p

�� ��

of ����� ��jkj� k��� The second term on the right	hand side of the above expression
decays exponentially as X � �� whereas the �rst term decays only algebraically�
so that for very large values of X� the �rst term will dominate the second� As �
approaches �� however� the coe�cient �
��� � ��� of the second term will be much

larger than the coe�cient of the �rst term� while the factor of
p

�� �� within the
exponential will become small� so that the second term will dominate the �rst term over
an ever	increasing range of values of X� Within this range� according to Benjamin
s
asymptotic expression ����� the zeros of ��X� will be near the zeros of cos��X�� and
hence will be spaced at intervals of length approximately 
���

Our numerical approximations of ��X� conform to the above predictions� Figures
� and � show that the range of values of X over which ��X	 �� exhibits oscillatory
behavior increases as � approaches �� and that within this range the zeros of ��X	 ��
are fairly evenly spaced� To compare the spacing between the zeros with the value

�� predicted by Benjamin
s estimate� we considered an approximate solution ��X	 ��
with � � ����� computed with N � ����� A total of �� zeros were found on either side
of the X � � axis� Since linear interpolation was used between the ���� data points�
the location of these zeros carries an uncertainty of approximately ����� 
 ����� In
the scaling used here� for � � ����� Benjamin
s estimate predicts a spacing between
the zeros of z� � ���� � ������ 
 ����� Table � lists the location Z of the zeros and
the intervals z between them for X � �� The computed values of z show adequate
agreement with z�� Note that the deviation of z from z� for the largest values of Z is
consistent with Benjamin
s estimate� Since the largest values of Z occur in a region
where the two terms in the estimate are nearly in balance� one would not expect their
spacing to be determined by the second term alone�

It deserves remark that the formal asymptotic derived in ��� and displayed in ����
is di�erent from Benjamin
s conclusion on the same topic in ���� In the latter reference�
Benjamin asserted the solitary	wave solutions of his equation decayed exponentially
and oscillated in�nitely often� Certainly� a solitary	wave solution � of ��� cannot
decay exponentially since then� by the Paley	Wiener Theorem� its Fourier transform
�� would be analytic� so in�nitely di�erentiable� and indeed all its derivatives would lie
in L��R�� This conclusion is not compatible with the singular aspect of the dispersion
cB in ���� The matter has been rigorously settled in a recent paper of Chen and Bona
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���� using the decay results of Li and Bona ����� ����� In ����� it is shown that

lim
x���

X���X� � D	

where D is a non	zero constant� This is consistent with the formalism in ���� and
implies that � must feature at most �nitely many oscillations�

	 Concluding Remarks

In this study� three themes were pursued in the context of Benjamin
s equation
for the approximation of internal waves in certain two	
uid systems where the e�ects
of surface tension cannot be ignored� First� a reappraisal of the derivation of the
equation is given with an eye toward better understanding the circumstances under
which the equation might be expected to provide physically relevant information� Sec	
ond� an exact analysis of solitary	wave solutions is provided via the Implicit Function
Theorem� The analysis is so organized that information about the stability is also ob	
tained� Finally� the Contraction Mapping Principle underlying the proof of existence
of solitary waves is used as the basis of a continuation	type algorithm� This algorithm
is implemented as a computer code which is used to obtain numerically generated
approximations of these solitary waves�

Analysis of the Benjamin equation in its context as a model for waves in cer	
tain two	
uid systems reveals there are ranges of the physical parameters for which
the model
s predictions might be relevant to waves seen in the laboratory or natural
settings� It must be acknowledged� however� that the range in question is somewhat
narrow� As a next step� it would be useful to construct a reliable numerical scheme
for the time	dependent problem ����� The outcome of an organized set of simulations
might well suggest aspects to look for in an experimental situation�

Previous experience with nonlinear� dispersive wave equations of the form de	
picted in ���� �with l � �� say� indicates that solitary	wave solutions may play an
important role in the long	time evolution of general disturbances� In consequence�
we endeavored here to understand these traveling	wave solutions in some detail� The
form of these solitary waves varies with the parameter � � �

�
�
p
C�� where C is the

di�erence between the solitary	wave speed and the speed c� of in�nitesimal waves of
extreme length� and 
 and � are measures of the strengths of the competing dispersive
e�ects �the parameter 
 is related to �nite	depth e�ects whilst non	zero values of �
are due to surface	tension e�ects�� In a given setting� it is possible to cover the entire
range � � � � � by appropriate choices of the speed c��� � C� of the solitary wave�
Values of � near � correspond to traveling waves with large� negative phase velocities�
however� and these lie outside the range where the equation is expected to be a valid
model� Also� the results of Section � suggest that solitary waves corresponding to
values of � near � will have small amplitudes� making them hard to discern� When �
is order � or greater� and is not too close to �� the corresponding solitary waves travel
to the right� and are potentially observable�

It is worth noting that the stability theory developed in Section � applies to
the Benjamin equation only for values of � near �� The general stability theory for
solitary	wave solutions of equations of the form depicted in ���� �cf� ���� does not apply
directly to the Benjamin equation� The problem of extending the stability theory

� A time�dependent algorithm using a split�step method �
�� based on Fourier projection for
the linear terms alternated with a conservative second�order approximation for the advective terms
is being developed�
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to encompass the physically relevant regime is currently under study� In addition
to an analytical approach� we expect to use the aforementioned computer code for
approximating solutions of the time	dependent problem ��� to investigate stability via
a coordinated set of numerical simulations with initial data corresponding to perturbed
solitary waves�

The continuation method developed in Section � for the approximation of solitary	
wave solutions of the Benjamin equation appears capable of producing traveling wave
solutions over the entire range of �� Another use of a time	dependent numerical inte	
grator would be to check directly how closely the computed solitary waves correspond
to traveling waves� Once this is settled satisfactorily� natural further questions include
determining the outcome of interactions of solitary waves and whether or not general
initial disturbances feature solitary waves in their long	time asymptotics� The results
of Vanden	Broeck and Dias �cf� ����� on a free	surface problem similar to the one con	
sidered here suggest that other branches of solitary	wave solutions to the Benjamin
equation may exist besides the one on which our computed solutions lie� Numerical
experiments like those described above may disclose whether such solutions exist and
play a role in general solutions of the initial	value problem for the Benjamin equation�
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