Putnam Seminar - Week 2

7. (B2, 2005) Find all positive integers n, k_{1}, \ldots, k_{n} such that $k_{1}+\cdots+k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1 .
$$

8. Let n be a fixed positive integer and let $b(n)$ be the minimum value of $k+\frac{n}{k}$ as k is allowed to range through all positive integers. Prove that $b(n)$ and $\sqrt{4 n+1}$ have the same integer part. (The "integer part" of a real number is the greatest integer which does not exceed it; e.g., for π it is 3 , for $\sqrt{21}$ it is 4 , for 5 it is 5 .)
9. How many zeros does the function $f(x)=2^{x}-1-x^{2}$ have on the real line? (I.e., how many real numbers x are there such that $2^{x}-1-x^{2}=0$?)
10. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \prod_{i=1}^{2 n}\left(n^{2}+i^{2}\right)^{1 / n}
$$

11. (B4, 2005) For positive integers m and n, let $f(m, n)$ denote the number of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m$. Show that $f(m, n)=f(n, m)$.
12. (B2, 2001) Find all pairs of real numbers (x, y) satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right)
\end{aligned}
$$

