Putnam Seminar - Week 3

13. (B2, 2006) Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n real numbers, there exists a non-empty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right|<\frac{1}{n+1} .
$$

14. (A5, 1997) Let N_{n} denote the number of ordered n-tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $1 / a_{1}+1 / a_{2}+\cdots+1 / a_{n}=1$. Determine whether N_{10} is even or odd.
15. (B1, 1988) A composite (positive integer) is a product $a b$ with a and b not necessarily distinct integers in $\{2,3,4, \ldots\}$. Show that every composite is expressible as $x y+x z+y z+1$, with x, y, and z positive integers.
16. (B1, 1973) Let $a_{1}, a_{2}, \ldots, a_{2 n+1}$ be a list of $2 n+1$ integers (not necessarily distinct) such that, if any one of them is removed, the remaining ones can be divided into two lists of n integers with equal sums. Prove that $a_{1}=a_{2}=\cdots=a_{2 n+1}$.
