Putnam Seminar - Week 2 - Sept. 23, 2015

(2014, B1) A base 10 over-expansion of a positive integer N is an expression of the form

$$
N=d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{0} 10^{0}
$$

with $d_{k} \neq 0$ and $d_{i} \in\{0,1,2, \ldots, 10\}$ for all i. For instance, the integer $N=10$ has two base 10 overexpansions: $10=10 \cdot 10^{0}$ and the usual base 10 expansion $10=1 \cdot 10^{1}+0 \cdot 10^{0}$. Which positive integers have a unique base 10 over-expansion?
(1986, A1) Find, with explanation, the maximum value of $f(x)=x^{3}-3 x$ on the set of all real numbers x satisfying $x^{4}+36 \leq 13 x^{2}$.
(1986, A2) What is the units (i.e., rightmost) digit of

$$
\left\lfloor\frac{10^{20000}}{10^{100}+3}\right\rfloor ?
$$

(Here the notation $\lfloor x\rfloor$, sometimes called "the floor of x ", is used to stand for the greatest integer less than or equal to x.)
(1986, A3) Evaluate

$$
\sum_{n=0}^{\infty} \operatorname{Arccot}\left(n^{2}+n+1\right)
$$

where $\operatorname{Arccot}(t)$ for $t \geq 0$ denotes the number θ in the interval $0<\theta \leq \pi / 2$ with $\cot (\theta)=t$.

