Some problems from Mathematical Miniatures

1. Consider all sequences with length $2 n+1$ (where n is a positive integer) whose terms are each 0 or 1 . What fraction of them have more occurrences of 1 among the last $n+1$ digits than among the first n ?
2. We shall call a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $\{1,2, \ldots, 2 n\}$ pleasant if $\left|x_{i}-x_{i+1}\right|=n$ for at least one $i \in\{1,2, \ldots, 2 n-1\}$. Prove that, for each $n \geq 1$, more than half of all permutations are pleasant.
3. Let M be the number of integer solutions of the equation

$$
x^{2}-y^{2}=z^{3}-t^{3}
$$

with the property $0 \leq x, y, z, t \leq 10^{6}$, and let N be the number of integer solutions of the equation

$$
x^{2}-y^{2}=z^{3}-t^{3}+1
$$

that have the same property. Prove that $M>N$.

