PUTNAM SEMINAR

1. Prove that there are infinitely many positive integers n with the property that if p is a prime divisor of $n^{2}+3$, then p is also a divisor of $k^{2}+3$ for some integer k with $k^{2}<n$.
2. Show that if the points of an isosceles right triangle of side length 1 are each colored with one of four colors, then there must be two points of the same color which are at least a distance $2-\sqrt{2}$ apart.
3. For which real numbers c is there a straight line that intersects the curve

$$
y=x^{4}+9 x^{3}+c x^{2}+9 x+4
$$

in four distinct points?
4a. Prove that there exist integers a, b, c, not all zero and each of absolute value less than one million, such that

$$
|a+b \sqrt{2}+c \sqrt{3}|<10^{-11}
$$

4b. Let a, b, c be integers, not all zero and each of absolute value less than one million. Prove that

$$
|a+b \sqrt{2}+c \sqrt{3}|>10^{-21}
$$

5. What is the units (i.e., rightmost) digit of

$$
\left[\frac{10^{20000}}{10^{100}+3}\right] ?
$$

6. Evaluate

$$
\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}
$$

