From the 2007 Putnam Exam

A1. Find all values of α for which the curves $y=\alpha x^{2}+\alpha x+\frac{1}{24}$ and $x=\alpha y^{2}+\alpha y+\frac{1}{24}$ are tangent to each other.

A2. Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $x y=1$ and both branches of the hyperbola $x y=-1$.

B1. Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.

B2. Suppose that $f:[0,1] \rightarrow \mathbf{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

