Congruences

If n is a natural number, $a \equiv b(\bmod n)$ means that a and b leave the same remainder when divided by n.

Wilson's Theorem: If p is a prime, then $(p-1)!\equiv-1(\bmod p)$.
Fermat's Little Theorem: If a is a natural number and p is a prime, then $a^{p} \equiv a(\bmod p)$.
Euler's phi function: Two numbers are said to be "relatively prime" if their greatest common divisor is 1. If m is a natural number, $\phi(m)$ is the number of natural numbers between 1 and m which are relatively prime to m. Thus, for example, $\phi(6)=2$ because out of the numbers $\{1,2,3,4,5,6\}$, only two (namely 1 and 5) are relatively prime to 6 . Also $\phi(7)=6$, since out of the numbers $\{1,2,3,4,5,6,7\}$, six of them (all but 7 itself) are relatively prime to 7 . Notice that for any prime number p, obviously $\phi(p)=p-1$.

Euler's Theorem: If a and m are natural numbers, and a and m are relatively prime, then $a^{\phi(m)} \equiv 1$ $(\bmod m)$

Example: Suppose p is a prime and $p \geq 7$. Show that the number $111 \cdots 1$, in which there are $p-11$'s, is divisible by p.

