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Overview

You have spent a lot of time learning how to create vectors from raw
data and manipulate them, but it is perhaps still unclear why we are so
interested in them. The short, abstract answer is that vectors provide a
convenient language to specify higher-dimensional objects. Today we will
see a bit of this as we learn to use vectors to describe lines and planes in
R3. This is not only a convenient exercise to ease us into thinking more
concretely about the utility of vectors, but also practical, as these will be
fundamental objects of study for us moving forward.
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Two Dimensions

In R2, we can give an equation for a line if we know two pieces of
information: a point P on the line, and the slope m of the line. Moving
to R3, it’s not immediately obvious how we might generalize the slope
concept.

There’s another way we can think of the slope of a line in R2 that lends
more insight: the slope of the line is the direction in which the line
extends from the point P.

In other words, a line can be completely described by a point it contains
and the direction it points in, i.e. an initial point and a direction
vector. Let’s see how this works in practice.



The Vector Equation

Think of the initial point P on the line as the tip of a vector #—r0 . To get
another point on the line, we could add the direction vector #—v to #—r0 . To
get the rest of the line, we can simply stretch or shrink this direction
vector forward or backward as far as we like. This stretching or shrinking
corresponds to multiplying #—v by a real scalar t.

In other words, the line is made up of every possible sum of #—r0 and a
scalar multiple of #—v .

Thus, we can specify a line in R2 or R3 symbolically with the following
vector equation:

#—r = #—r0 + t #—v

for any scalar value t, i.e., t is the variable (or parameter) here.



The Parametric Equations

The equation above is descriptive, but to be able to do many calculations
we will want to know what it means in terms of the variables x and y
(and z , if we are working in R3).

Let #—r = 〈x , y , z〉, #—r0 = 〈x0, y0, z0〉, and #—v = 〈a, b, c〉. The equation
above then becomes:

〈x , y , z〉 = 〈x0, y0, z0〉+ 〈ta, tb, tc〉

We can write this as a set of three parametric equations:

x = x0 + ta

y = y0 + tb

z = z0 + tc

Note that if we are given a line in this form, we can immediately read off
the point on the line 〈x0, y0, z0〉 and a direction vector 〈a, b, c〉.



The Symmetric Equations

There’s one more way that lines in R3 are often described. If we solve
each of the equations above for the parameter t, we have:

t =
x − x0

a
=

y − y0
b

=
z − z0

c

These are called the symmetic equations of the line.

Note again that if we are given a line in this form, we can immediately
read off the point 〈x0, y0, z0〉 on the line and a direction vector 〈a, b, c〉.



Example

Find vector, parametric, and symmetric equations of the line L which
passes through the points A = (2, 4,−3) and B = (3, 4, 1).

Remember: to give an equation of a line, we need a point on the line,
and the direction it extends in.

We know a point on L immediately: A.

Since L extends between A and B, a direction vector for L is:

#—v := 〈3− 2, 4− 4, 1− (−3)〉 = 〈1, 0, 4〉

Thus, a vector equation for L is:

〈x , y , z〉 = 〈2, 4,−3〉+ t〈1, 0, 4〉



Example, cont.

From the previous slide, a set of parametric equations for L is:

x = 2 + t

y = 4

z = −3 + 4t

and a set of symmetric equations for L is:

y = 4, x − 2 =
z + 3

4



Example

Let L1 and L2 be lines in R3 described by the parametric equations:

L1 : x = 1 + t y = −2 + 3t z = 4− t

L2 : x = 2s y = 3 + s z = −3 + 4s

Are these lines parallel, intersecting, or skew (nonintersecting and
nonparallel)?

By definition, parallel lines extend in the same direction. In other words,
if L1 has direction vector #—v1 and L2 has direction vector #—v2, then L1 and
L2 are parallel if and only if #—v1 and #—v2 point in the same (or exact
opposite) direction, i.e., if #—v1 is a scalar multiple of #—v2.

Now, note that L1 points in the direction of #—v1 := 〈1, 3,−1〉 and L2
points in the direction of #—v2 := 〈2, 1, 4〉. Thus, L1 and L2 are not parallel,
as #—v2 is not a scalar multiple of #—v1.



Example, cont.

If the lines intersect, there must be values of s and t such that the x , y ,
and z values of each are the same. This gives us the three equations:

1 + t = 2s

−2 + 3t = 3 + s

4− t = −3 + 4s

Solving the first gives t = 2s − 1. Plugging this into the second gives
s = 8

5 , so that t = 11
5 . However, these values don’t satisfy the third

equation, so L1 and L2 do not intersect, i.e. they are skew .
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Surfaces

As in R2, lines are just the first of many curves we that we will draw and
describe in R3. For now, let’s change gears and begin to discuss a new
class of objects in R3 that don’t exist in R2: surfaces. In particular, we
will discuss planes.

A plane is an (important) example of a surface. Intuitively, a plane is the
collection of all points lying in a flat sheet sitting in space.

This is in some way fundamentally different than a line or any other
curve, as a plane has two (topological) dimensions, whereas a curve has
only one. Put another way, any curve in R3 is like a distorted string,
whereas a surface is like a distorted sheet of paper.

Let’s now turn our full attention to planes.



Equation of a Plane

We have a qualitative description of what a plane is, but how can we
specify one mathematically? Well, the first thing to note is that a plane
can be specified uniquely if we know two pieces of information: a point
P = (x0, y0, z0) in the plane, and a vector #—n = 〈a, b, c〉 orthogonal to it
(called a normal vector). (Take a moment to think about this).

How does this information help us? Think of the point P in the plane as
the tip of a vector #—r0 = 〈x0, y0, z0〉. Suppose that (x , y , z) is any other
point in the plane, which we can think of as the tip of the vector
#—r = 〈x , y , z〉 Form the vector #—r − #—r0 , which lies in the plane. Note that
since #—n is orthogonal to the plane, it must also be orthogonal to the
vector #—r − #—r0 . So, the plane is the collection of points (x , y , z) such that
#—r − #—r0 is orthogonal to #—n . How can we express this mathematically?



Equation, cont.

Recall that two vectors are orthogonal precisely when their dot product is
zero. Therefore, we can express the observation above as an equation:

#—n · ( #—r − #—r0) = 0

This is called a vector equation of the plane. If we write the vectors
into component form and expand the dot product, we obtain a scalar
equation of the plane:

〈a, b, c〉 · 〈x − x0, y − y0, z − z0〉 = 0

a(x − x0) + b(y − y0) + c(z − z0) = 0

Finally, if we group the constants −ax0,−by0, and −cz0 together as one
constant d , we obtain a linear equation of the plane:

ax + by + cz + d = 0

The plane is the set of all points (x , y , z) satisfying these equations.



Equation Note

Note that the latter equation is particularly useful because we can
immediately read off the normal vector #—n from the coefficients of x , y ,
and z .



Example

Find vector, scalar, and linear equations of the plane T passing through
the points P = (1, 3, 2), Q = (3,−1, 6), and R = (5, 2, 0).

Remember: a plane is determined by a point it contains and a normal
vector. We have a point in the plane: P. What about a normal vector?

Note that T contains the vectors
#   —

PQ = 〈2,−4, 4〉 and
#   —

PR = 〈4,−1,−2〉.
The vector

#   —

PQ × #   —

PR = 〈12, 20, 14〉 is orthogonal to both of these, and
hence T itself!

Thus, a vector equation of T is:

〈12, 20, 14〉 · 〈x − 1, y − 3, z − 2〉 = 0



Example, cont.

From this, we immediately obtain a scalar equation of T :

12(x − 1) + 20(y − 3) + 14(z − 2) = 0

and a linear equation of T :

12x + 20y + 14z − 100 = 0



Example

The angle between two planes is the angle between their normal vectors.
Calculate the angle between the planes T1 and T2, given by the
equations x + y + z = 1 and x − 2y + 3z = 1, respectively.

A vector orthogonal to T1 is #—n 1 := 〈1, 1, 1〉 and a vector orthogonal to
T2 is #—n 2 := 〈1,−2, 3〉.

Let θ be the angle between the vectors #—n 1 and #—n 2 (which is the angle
between T1 and T2). Recall that #—n 1 · #—n 2 = | #—n 1|| #—n 2| cos(θ). Thus:

cos(θ) =
#—n 1 · #—n 2

| #—n 1|| #—n 2|
=

2√
42

giving

θ = arccos
2√
42
≈ 72◦



Example

Find the point P at which the line L with parametric equations
x = 2 + 3t, y = −4t, z = 5 + t intersects the plane T with linear
equation 4x + 5y − 2z = 18.

For L and T to intersect, there must be a value of t such that the x , y ,
and z coordinates of the corresponding point on L satisfy the equation of
T .

That is, we make a substitution:

4x + 5y − 2z = 18

⇒ 4(2 + 3t) + 5(−4t)− 2(5 + t) = 18

⇒ t = −2

For this t, we have x = −4, y = 8, and z = 3. Thus, these objects

intersect at P = (−4, 8, 3) .
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Exercises

1. Find a set of vector, parametric, and symmetric equations of the line
through the origin and the point (4, 3,−1).

2. Find a set of vector, parametric, and symmetric equations of the line
through the point (0, 14,−10) and parallel to the line x = −1 + 2t,
y = 6− 3t, z = 3 + 9t.

3. Is the line through (−4,−6, 1) and (−2, 0,−3) parallel to,
intersecting with, or skew with the line through (10, 18, 4) and
(5, 3, 14)?

4. Find a set of vector, scalar, and linear equations of the plane
through (1,−1,−1) and parallel to the plane 5x − y − z = 6.

5. Calculate the angle between the planes 9x − 3y + 6z = 2 and
2y = 6x + 4z .

6. Find the point at which the line x = t − 1, y = 1 + 2t, z = 3− t
intersects the plane 3x − y + 2z = 5.



Solutions

1. One solution:
Vector: 〈x , y , z〉 = 〈0, 0, 0〉+ t 〈4, 3,−1〉
Parametric:

x = 4t

y = 3t

z = −t

Symmetric: x
4 = y

3 = −z . Bear in mind that there are many possible
correct solutions that may look quite different from this one.



Solutions, cont.

2. One solution:
Vector: 〈x , y , z〉 = 〈0, 14,−10〉+ t 〈2,−3, 9〉
Parametric:

x = 2t

y = 14− 3t

z = −10 + 9t

Symmetric: x
2 = y−14

−3 = z+10
9



Solutions, cont.

3. The lines are parallel.

4. One solution:
Vector: 〈5,−1,−1〉 · 〈x − 1, y + 1, z + 1〉 = 0
Scalar: 5(x − 1) + (−y − 1) + (−z − 1) = 0
Linear: 5x − y − z − 7 = 0

5. cos(θ) = 1, so θ = 0, i.e. the planes are parallel. A way to see this
without using the dot product: their normal vectors are parallel.

6. (−4,−5, 6)
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