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Chapter Overview

In this course, we will discuss the calculus of various objects in R3. To
get us started, we begin with the simplest of these objects: curves. In
this short chapter, we will discuss the calculus of so-called space curves;
curves in R3.

Section Overview

If we’re going to create a calculus of curves in R3, we need functions to
be able to do this calculus on. In other words, we functions whose graphs
are space curves.

In this section, we introduce exactly the functions we need: so-called
vector-valued functions, or what are more commonly called just vector
functions. We’ll start by defining such functions, then learn techniques
to graph them, before finally moving in the direction of calculus by
learning to take their limits.
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Definition

A vector-valued function #—r (t), or simply vector function, is a
function whose domain is a set of real numbers and whose range is a set
of vectors.

Example

Let #—r (t) =
〈
t, t2, 2 cos(t)

〉
. Evaluate #—r (2) and #—r (π).

By plugging in, we have:

#—r (2) =
〈
2, 4, 2 cos(2)

〉
and

#—r (π) =
〈
π, π2,−2

〉

A Helpful Observation and Definition

Notice on the previous slide that each of the components of #—r (t) is,
itself, a function of t. This is true of all vector functions. The functions
that make up the components of the vector function #—r (t) are, helpfully,
called its component functions. In this case:

x(t) := t

y(t) := t2

z(t) := 2 cos(t)

This isn’t just an interesting observation: these component functions can
come in especially handy when attempting to graph vector functions;
more on that later.

Example

As another example, suppose we let #—r (t) be the line

#—r (t) = #—r0 + t #—v

Then #—r (t) is a vector function. Indeed, it accepts any real number as an
argument, and returns a vector that, when its tail is placed at the origin,
points to a point on our line.

We can see this even more explicitly if we break #—r (t) out into
component form. Let #—v = 〈a, b, c〉 and #—r0 = 〈x0, y0, z0〉. We have:

#—r (t) = #—r0 + t #—v

= 〈x0 + ta, y0 + tb, z0 + tc〉

The latter is certainly a vector.



Example, cont.

Notice that in this case, the component functions of ~r(t) are:

x(t) := x0 + at

y(t) := y0 + bt

z(t) := z0 + ct

In particular, the component functions of the line are its parametric
equations! This hints at the reason component functions can be so useful
for graphing: in general, the component functions of a vector function
are the parametric equations of the graph of that vector function... but
perhaps we are getting ahead of ourselves.

Let’s step back for a moment. In general, how can we start with an
arbitrary vector function and assign a graph to it? Well...

Space Curves

Suppose we have a vector function #—r (t). As t varies, the tip of the
vector #—r (t), whose tail we will always place at the origin, traces out a
space curve, i.e. a curve in R3, C . Therefore, we think of the graph of
an arbitrary vector function in R3 as a space curve.

Space Curves, cont.

Given the vector function #—r (t) = 〈f (t), g(t), h(t)〉 and the corresponding
space curve C , the equations x = f (t), y = g(t), and z = h(t) giving
the coordinates of each point on C are called the parametric equations
of C .

In other words, the component functions of the vector function #—r (t)
make up (the right side of) the parametric equations of the curve C .

This connection to parametric equations is fundamental in quickly
creating the graph of a given vector function, as we shall see in the
examples below.

Example

Describe the space curve C1 which is the graph of the vector function
#—r (t) = 〈1 + t, 2 + 5t,−1 + 6t〉.

Note that the component functions of #—r (t) are:

x(t) := 1 + t

y(t) := 2 + 5t

z(t) := −1 + 6t

These are the parametric equations of a line through (1, 2,−1) parallel to
the vector 〈1, 5, 6〉, and thus we have a complete description of C1.



Example

Sketch the curve C2 which is the graph of the vector function
#—r (t) = 〈cos(t), sin(t), t〉.

Note once again that the component functions of #—r (t) are:

x(t) := cos(t)

y(t) := sin(t)

z(t) := t

Recall that in R2 the first two parametric equations plot the unit circle.
Therefore, as t increases, x and y will trace out the unit circle in the
xy -plane. Simultaneously, as t increases z will rise. The result is a helix:

Example, cont.

Figure: C2

(Note that the curve does not include the cylinder, which is only included
as scaffolding)

A Note On Computers

It is nontrivial to sketch an arbitrary space curve. You have probably
noted that the methods we have used here are ad-hoc, and the sketching
problems you will see in this course tend to be confined to using these
very specialized techniques. Which is to say, if these problems feel a bit
artificially chosen, they are intentionally so.

To sketch a randomly-chosen space curve, it is easiest to use a computer.
Bear in mind that you may need to craft your input carefully. For
example, to plot a space curve in Wolfram Alpha, you must specify it
parametrically.

Limits

In the next section, we will discuss the calculus of vector functions.
Toward that end, we first need to define the limit of such a function. We
define it in the obvious way:

The limit of a vector function #—r (t) =
〈
f (t), g(t), h(t)

〉
as t

approaches a is given by:

lim
t→a

#—r (t) =

〈
lim
t→a

f (t), lim
t→a

g(t), lim
t→a

h(t)

〉



Example

Let #—r (t) =
〈

1 + t3, te−t , sin(t)t

〉
. calculate limt→0

#—r (t).

By definition, we have:

lim
t→0

#—r (t) =

〈
lim
t→0

(1 + t3), lim
t→0

(te−t), lim
t→0

(
sin(t)

t

)〉
= 〈1, 0, 1〉
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Exercises

1. Sketch the curve in R2 with vector equation #—r (t) =
〈
t2 − 1, t

〉
. Use

arrows to indicate the direction in which the curve flows as t
increases.

2. Sketch the space curve with vector equation
#—r (t) =

〈
2 cos(t), 2 sin(t), 1

〉
. Use arrows to indicate the direction in

which the curve flows as t increases.

3. Evaluate limt→1

〈
t2−t
t−1 ,

√
t + 8, sin(πt)ln(t)

〉
.

Solutions

1. Use a graphing utility to check your answer.

2. Use a graphing utility to check your answer.

3. limt→1

〈
t2−t
t−1 ,

√
t + 8, sin(πt)ln(t)

〉
= 〈1, 3,−π〉; L’Hopital’s Rule may

help you!
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