13.2: Derivatives and Integrals of Vector Functions

Julia Jackson

Department of Mathematics
The University of Oklahoma

Fall 2021

In the previous section we defined the concept of a vector function (i.e. a function that takes a real number and returns a vector), and learned that the graphs of such functions in \mathbb{R}^{3} are space curves. Therefore, the calculus of space curves in \mathbb{R}^{3} amounts to the calculus of these vector functions.

We began moving toward this calculus by defining the limit of a vector function. We now continue in that vein, and cover the fundamentals of the calculus of space curves: derivatives and integrals.

Table of Contents

Derivatives

Integrals

Exercises

The Derivative

Let $\vec{r}(t)$ be a vector-valued function. Its derivative is defined as follows:

$$
\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}=\vec{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}
$$

Note that this is analogous to the definition of the derivative of a single-variable real-valued function $f(x)$. In fact, one can show that directly from this definition that if $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ with f, g, and h differentiable, then

$$
\vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

Example

Calculate the derivative of $\vec{r}(t)=\left\langle 1+t^{3}, t e^{-t}, \sin (2 t)\right\rangle$ at $t=0$.
From the previous slide, we have:

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\left\langle\frac{\mathrm{d}}{\mathrm{~d} t}\left(1+t^{3}\right), \frac{\mathrm{d}}{\mathrm{~d} t}\left(t e^{-t}\right), \frac{\mathrm{d}}{\mathrm{~d} t} \sin (2 t)\right\rangle \\
& =\left\langle 3 t^{2}, e^{-t}-t e^{-t}, 2 \cos (2 t)\right\rangle
\end{aligned}
$$

Thus, plugging in $t=0$, we have:

$$
\vec{r}^{\prime}(0)=\langle 0,1,2\rangle
$$

Graphical Interpretation, cont.

Recall that for a vector function $\vec{r}(t)$, we have:

$$
\vec{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}
$$

Consider the following sketch of C, the graph of $\vec{r}(t)$:

Graphical Interpretation

Given a real-valued function $f(x)$, we know that the derivative of f at $x=a$ represents the slope of the line tangent to f at the point $(a, f(a))$. What can we say about the derivative of a vector-valued function $\vec{r}(t)$?

Graphical Interpretation, cont.

As h approaches 0 , the point Q in the previous slide approaches the point P, and thus the secant vector $\vec{r}(t+h)-\vec{r}(t)$ approaches a vector tangent to C at P. Multiplying by $\frac{1}{h}$ only scales the secant vector in this process, and thus:

$$
\vec{r}^{\prime}(t) \text { represents a vector tangent to the graph of } \vec{r}(t) \text { at a given } t
$$

Example

Find a vector \vec{w} that lies tangent to the graph of the vector function $\vec{r}(t)=\left\langle 1+t^{3}, t e^{-t}, \sin (2 t)\right\rangle$ at the point $(1,0,0)$.

From the previous slide, we know that one such vector is the derivative of $\vec{r}(t)$ at the point $(1,0,0)$. So, the first thing we need to know is when the graph of $\vec{r}(t)$ passes through the point $(1,0,0)$, i.e., what t-value(s) give $\vec{r}(t)=\left\langle 1+t^{3}, t e^{-t}, \sin (2 t)\right\rangle=\langle 1,0,0\rangle$. Well, from the first components of each we see that $1+t^{3}=1$ gives $t=0$. A quick calculation verifies that $\vec{r}(0)=\langle 1,0,0\rangle$.

Therefore, a vector tangent to the graph of $\vec{r}(t)$ at the point $(1,0,0)$ is:

$$
\vec{w}=\vec{r}^{\prime}(0)=\left.\left\langle 3 t^{2}, e^{-t}-t e^{-t}, 2 \cos (2 t)\right\rangle\right|_{t=0}=\langle 0,1,2\rangle
$$

Example

Find a unit vector \vec{u} that lies tangent to graph of $\vec{r}(t)=\left\langle 1+t^{3}, t e^{-t}, \sin (2 t)\right\rangle$ at the point $(1,0,0)$.

In the previous example, we saw that a vector tangent to $\vec{r}(t)$ at the point $(1,0,0)$ is $\vec{r}^{\prime}(0)=\langle 0,1,2\rangle$. So, a unit tangent vector is:

$$
\vec{u}=\frac{\vec{r}^{\prime}(0)}{\left|\vec{r}^{\prime}(0)\right|}=\frac{\langle 0,1,2\rangle}{|\langle 0,1,2\rangle|}=\frac{\langle 0,1,2\rangle}{\sqrt{0^{2}+1^{2}+2^{2}}}=\left\langle 0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle
$$

For calculations, we will sometimes want the tangent vector to have unit length (i.e. length 1), so we construct the unit tangent vector:

$$
\vec{T}(t):=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}
$$

First, notice that this vector is also tangent to the graph of $\vec{r}(t)$, as it is a scalar multiple of $\vec{r}^{\prime}(t)$. Furthermore, it has length 1 , as:

$$
|\vec{T}(t)|=\left|\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}\right|=\frac{\left|\vec{r}^{\prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}=1
$$

Connection to Slope and the Tangent Line

In single-variable calculus, the derivative $f^{\prime}(a)$ of a function $f(x)$ at $x=a$ gives the slope of the line tangent to the graph of $f(x)$ at the point ($a, f(a)$). Using this information, we can then give an equation for this tangent line.

Here we have a similar situation: the derivative $\vec{r}^{\prime}(a)$ of $\vec{r}(t)$ at $t=a$ gives a vector tangent to the graph of $\vec{r}(t)$ at the point corresponding to $\vec{r}(a)$. This tangent vector can be thought of as a direction vector of the line tangent to the graph of $\vec{r}(t)$ at $t=a$.

Example

Differentiation Rules

Just as with real-valued functions, there are several differentiation rules that may come in handy. Let $\vec{u}(t)$ and $\vec{v}(t)$ be differentiable vector functions, let c be a scalar, and let $f(t)$ be a real-valued function. We have:

1. $\frac{\mathrm{d}}{\mathrm{d} t}(\vec{u}(t)+\vec{v}(t))=\vec{u}^{\prime}(t)+\vec{v}^{\prime}(t)$
2. $\frac{\mathrm{d}}{\mathrm{d} t}(c \vec{u}(t))=c \vec{u}^{\prime}(t)$
3. $\frac{\mathrm{d}}{\mathrm{d} t}(f(t) \vec{u}(t))=f^{\prime}(t) \vec{u}(t)+f(t) \vec{u}^{\prime}(t)$
4. $\frac{\mathrm{d}}{\mathrm{d} t}(\vec{u}(t) \cdot \vec{v}(t))=\vec{u}^{\prime}(t) \cdot \vec{v}(t)+\vec{u}(t) \cdot \vec{v}^{\prime}(t)$
5. $\frac{\mathrm{d}}{\mathrm{d} t}(\vec{u}(t) \times \vec{v}(t))=\vec{u}^{\prime}(t) \times \vec{v}(t)+\vec{u}(t) \times \vec{v}^{\prime}(t)$
6. $\frac{\mathrm{d}}{\mathrm{d} t}[\vec{u}(f(t))]=f^{\prime}(t) \vec{u}^{\prime}(f(t))$

Definition

The definite integral of a continuous vector function
$\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ is defined analogously to the definite integral of a continuous real function, as follows:

$$
\begin{aligned}
\int_{a}^{b} \vec{r}(t) \mathrm{d} t & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \vec{r}\left(t_{i}\right) \Delta t \\
& =\lim _{n \rightarrow \infty}\left\langle\sum_{i=1}^{n} f\left(t_{i}\right) \Delta t, \sum_{i=1}^{n} g\left(t_{i}\right) \Delta t, \sum_{i=1}^{n} h\left(t_{i}\right) \Delta t\right\rangle \\
& =\left\langle\int_{a}^{b} f(t) \mathrm{d} t, \int_{a}^{b} g(t) \mathrm{d} t, \int_{a}^{b} h(t) \mathrm{d} t\right\rangle
\end{aligned}
$$

Unlike the derivative, there is no nice graphical interpretation of the definite integral of a vector function.

Let $\vec{R}(t)$ be an antiderivative for $\vec{r}(t)$. Then, by the previous slide, the Fundamental Theorem of Calculus carries over for vector functions, and says:

$$
\int_{a}^{b} \vec{r}(t) \mathrm{d} t=\left.\vec{R}(t)\right|_{a} ^{b}=\vec{R}(b)-\vec{R}(a)
$$

Indefinite Integrals

What about indefinite integrals? Recall that the indefinite integral of a real-valued function is its most general antiderivative. The same is true of vector functions. Let's illustrate this with an example.

Example

$$
\text { Let } \vec{r}(t)=\langle 2 \cos (t), \sin (t), 2 t\rangle . \text { Evaluate } \int_{0}^{\pi / 2} \vec{r}(t) \mathrm{d} t
$$

By the fundamental theorem, we have:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \vec{r}(t) \mathrm{d} t & =\int_{0}^{\pi / 2}\langle 2 \cos (t), \sin (t), 2 t\rangle \mathrm{d} t \\
& =\left.\left\langle 2 \sin (t),-\cos (t), t^{2}\right\rangle\right|_{0} ^{\pi / 2} \\
& =\left\langle 2,1, \frac{\pi^{2}}{4}\right\rangle
\end{aligned}
$$

Example

Evaluate $\int\langle 2 \cos (t), \sin (t), 2 t\rangle d t$.
We have:

$$
\begin{aligned}
\int\langle 2 \cos (t), \sin (t), 2 t\rangle \mathrm{d} t & =\left\langle\int 2 \cos (t) \mathrm{d} t, \int \sin (t) \mathrm{d} t, \int 2 t \mathrm{~d} t\right\rangle \\
& =\left\langle 2 \sin (t)+C_{1},-\cos (t)+C_{2}, t^{2}+C_{3}\right\rangle \\
& =\left\langle 2 \sin (t),-\cos (t), t^{2}\right\rangle+\left\langle C_{1}, C_{2}, C_{3}\right\rangle \\
& =\left\langle 2 \sin (t),-\cos (t), t^{2}\right\rangle+\vec{C}
\end{aligned}
$$

Derivatives

Integrals

Exercises

1. Let $\vec{r}(t)=\langle\sqrt{t},(2-t)\rangle$. Evaluate $\vec{r}^{\prime}(1)$. Then find $\vec{T}(1)$, the unit tangent vector to $\vec{r}(t)$ at $t=1$.
2. Let $\vec{r}(t)=\langle 2 \cos (t), \sin (t), t\rangle$. Find a set of parametric equations for the line L that lies tangent to the graph of $\vec{r}(t)$ at the point ($0,1, \pi / 2$).
3. Evaluate $\int\left\langle\frac{1}{t+1}, \frac{1}{t^{2}+1}, \frac{t}{t^{2}+1}\right\rangle \mathrm{d} t$ and $\int_{0}^{1}\left\langle\frac{1}{t+1}, \frac{1}{t^{2}+1}, \frac{t}{t^{2}+1}\right\rangle \mathrm{d} t$.

Solutions

1. $\vec{r}^{\prime}(1)=\left\langle\frac{1}{2},-1\right\rangle, \quad \vec{T}(1)=\left\langle\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$
2. [One possible answer:] A set of parametric equations for L is:

$$
\begin{aligned}
& x=-2 t \\
& y=1 \\
& z=t+\frac{\pi}{2}
\end{aligned}
$$

3. $\int\left\langle\frac{1}{t+1}, \frac{1}{t^{2}+1}, \frac{t}{t^{2}+1}\right\rangle \mathrm{d} t=\left\langle\ln (t+1), \arctan (t), \frac{1}{2} \ln \left(t^{2}+1\right)\right\rangle+\vec{C}$; and $\int_{0}^{1}\left\langle\frac{1}{t+1}, \frac{1}{t^{2}+1}, \frac{t}{t^{2}+1}\right\rangle \mathrm{d} t=\left\langle\ln (2), \frac{\pi}{4}, \frac{1}{2} \ln (2)\right\rangle$.
