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Overview

At last, we arrive at differentiation. In this section we begin by learning
how to take derivatives of two-variable functions, how to denote these
derivatives, and how to interpret them graphically. We’ll also apply our
methods to computing derivatives of functions of more than two
variables. These tasks completed, we will then examine how other core
derivative concepts from single-variable calculus apply here, namely:
implicit differentiation and higher-order derivatives.
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Single-Variable Functions

Recall that the derivative of a single-variable function f (x) at x = a is
defined as follows:

f ′(a) =
df

dx

∣∣∣∣
x=a

= lim
h→0

f (a + h)− f (a)

h

This definition is designed specifically to tell us the instantaneous rate of
change of f at x = a.

With this motivation in mind, how might we define the derivative of, say,
a two-variable function f (x , y)? Could we design it to give us the
instantaneous rate of change of f (x , y) at a point, (a, b)? Let’s think
about this idea a bit more carefully with the contour map of a sample
function f (x , y) in front of us.



A Two-Variable Function The Derivative?

Now suppose we wanted to calculate the instantaneous rate of change of
f at the point (2, 1), something we would like to call f ′(2, 1).
Unfortunately, this is inherently ambiguous. Indeed, if we move vertically
along the line x = 2, we see that f ′(2, 1) should be a fairly large positive
number, as f rapidly incresases to 70, and then 80 before we make it to
(2, 2). On the other hand, if we move horizontally along y = 1, the value
of f actually seems to decrease very slightly, suggesting a very small
negative value for f ′(2, 1). Every possible direction we might head away
from (2, 1) in gives a different instantaneous rate of change of f !

Thus, there is no way to define “the” derivative of a two-variable
function at a point!

Not “the” Derivative, but Derivatives!

Instead, to give an unambiguous derivative (i.e. the instantaneous rate of
change of a function) we need to specify two things: the point at which
we wish to take such a derivative, and the direction in which we wish to
take it. Today — for two-variable functions, anyway — we will only talk
about two directions: parallel to the x-axis, and parallel to the y -axis.
These are the so-called partial derivatives.

Definition for Two-Variable Functions

The partial derivative of f with respect to x at (a, b) is:

fx(a, b) = lim
h→0

f (a + h, b)− f (a, b)

h

This tells us the instantaneous rate at which f is changing at (a, b) when
we move parallel to the x-axis in the direction of increasing x , with y
held fixed.

Similarly the partial derivative of f with respect to y at (a, b) is:

fy (a, b) = lim
h→0

f (a, b + h)− f (a, b)

h

This tells us the instantaneous rate at which f is changing at (a, b) when
we move parallel to the y -axis in the direction of increasing y , with x
held fixed.



Contour Map, Revisited

If we examine the contour map on the slide above, then, as we discussed,
we see that fx(2, 1) is a negative number near zero, and fy (2, 1) is a
comparatively large positive number.

Calculation

We now know how the two partial derivatives of a two-variable function
are defined and what they represent verbally. We certainly don’t want to
do calculations with the limit definition of the derivative, as this is just as
labor intensive as it was for single-variable functions. We would like a
quick way of computing partial derivatives. Here it is:

To calculate fx(x , y), think of y as a constant and differentiate f (x , y)
with respect to x . Calculate fy (x , y) similarly.

Why can we do this? Look back to the definition of, e.g., fx(x , y). In this
definition, y is held constant. Therefore, we can treat it like one in our
calculations. A similar argument holds for fy (x , y).

Example

Let f (x , y) = x3 + x2y3 − 2y2. Calculate fx(2, 1) and fy (2, 1).

From the previous slide, we have:

fx(x , y) = 3x2 + 2xy3

and
fy (x , y) = 3x2y2 − 4y

Thus:

fx(2, 1) = 12 + 4 = 16

fy (2, 1) = 12− 4 = 8

A Note on Notation

There are several ways to denote partial derivatives of a function
z = f (x , y):

fx(x , y) =
∂ f

∂x
=

∂

∂x
f =

∂z

∂x

Similar notation holds for fy (x , y).

So, for example, in the exercise we just completed we could have written

∂ f

∂x
= 3x2 + 2xy3

and
∂ f

∂x

∣∣∣∣
(x,y)=(2,1)

= 16



Graphical Interpretation

For a single-variable function f (x), f ′(a) represents the slope of the line
tangent to the graph of f at (a, f (a)). With that in mind, how might we
graphically interpret fx(a, b) and fy (a, b)?

Let’s start with fx(a, b). This is the instantaneous rate of change of f at
(a, b) when we move parallel to the x-axis, i.e., when y = b is held
constant. How does this play out graphically?

When we hold y = b constant, we obtain a cross-sectional curve C1 from
the graph of f (x , y), which runs parallel to the x-axis (see the following
slide and the board for a picture of this scenario). If we let T1 be the line
tangent to C1 at the point (a, b, c), then fx(a, b) represents the slope of
that line (slope, in this case, being the change in z over the change in x).

Graphical Interpretation, cont.

Graphical Interpretation, cont.

Put more technically, if we let g(x) = f (x , b) be a single-variable
function, then C1 is the graph of g , and fx(a, b) = g ′(a) is the slope of
the tangent line T1 to C1.

Similarly, if we hold x = a constant, f (a, y) sweeps out a curve C2 in S
which runs parallel to the y -axis. fy (a, b) is the slope of the line T2

tangent to C2 at (a, b, c) (slope being change in z over change in y).

We will return to this interpretation in the following section, when we
talk about tangent planes.

Implicit Functions: A Reminder

Recall that when an equation involves two variables, say x and y , we can
think of y as being an implicit “function” of x , because its value depends
indirectly on the value of x . For example, consider the equation:

x2 + y2 = 1

Choosing a value for x narrows the values for y substantially. For
example, if we let x = 1, then for the equation to be true, y must be 0.
If we choose x = 0, y must be ±1.



Implicit Differentiation

If we have an equation that makes, say, y an implicit function of x , then
we can differentiate that equation by acting as though y is a true
function of x and applying derivative rules accordingly. For example, to
calculate dy

dx when x2 + y2 = 1:

2x + 2y
dy

dx
= 0

by the chain rule, so that
dy

dx
=
−x
y

We can use these same techniques when working with an equation
involving three variables and taking, say, z to be a function of x and y ,
as illustrated in the following example.

Example

Given the equation:
x3 + y3 + z3 + 6xyz = 1

Calculate
∂z

∂x
.

Since we do not have an explicit relationship between x , y , and z of the
form z = f (x , y), we must use implicit differentiation. We begin by
computing the partial derivative of both sides of the above equation with
respect to x . To do so, we must both treat y as a constant and z as a
function of x and y . Differentiating, we obtain:

3x2 + 3z2
∂z

∂x
+ 6yz + 6xy

∂z

∂x
= 0

Solving for ∂z
∂x we have:

∂z

∂x
=
−3x2 − 6yz

3z2 + 6xy

More Variables

To compute partial derivatives when there are more variables, the process
is essentially the same: treat all variables as constants except the one we
are differentiating with respect to, and then differentiate as you normally
would with single-variable functions.

Example

Calculate fy (x , y , z) for f (x , y , z) = exy ln(z).

Regarding x and z as constants, we have:

fy (x , y , z) = xexy ln(z)
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Second-Order Partial Derivatives

Suppose that we have a function f (x , y) (though the number of variables
is irrelevant). Its derivative fx(x , y) is also a function of two variables, so
we can often take its partial derivatives, too! Here’s how we denote f ’s
second-order partial derivatives:

∂

∂x
fx(x , y) = (fx)x(x , y) = fxx(x , y) =

∂

∂x

(
∂ f

∂x

)
=

∂2f

∂x2

∂

∂y
fx(x , y) = (fx)y (x , y) = fxy (x , y) =

∂

∂y

(
∂ f

∂x

)
=

∂2f

∂y∂x

∂

∂x
fy (x , y) = (fy )x(x , y) = fyx(x , y) =

∂

∂x

(
∂ f

∂y

)
=

∂2f

∂x∂y

∂

∂y
fy (x , y) = (fy )y (x , y) = fyy (x , y) =

∂

∂y

(
∂ f

∂y

)
=

∂2f

∂y2

Example

Calculate all of the second-order partial derivatives of

f (x , y) = x3 + x2y3 − 2y2

First, we have:
fx(x , y) = 3x2 + 2xy3

and
fy (x , y) = 3x2y2 − 4y

Therefore, the second-order partial derivatives of f (x , y) are:

fxx(x , y) = 6x + 2y3

fxy (x , y) = 6xy2

fyx(x , y) = 6xy2

fyy (x , y) = 6x2y − 4

Clairaut’s Theorem

In the previous example, the mixed partial derivatives fxy and fyx were the
same. Interestingly, this is no accident, and happens quite often.

Clairaut’s Theorem: If f is defined on a disk D that contains the point
(a, b), and the mixed partial derivatives fxy and fyx are continuous on D,
then:

fxy (a, b) = fyx(a, b)

This is technical, but it essentially says that if the mixed partial
derivatives are continuous, then they are identical.



Even Higher Derivatives

We can, of course, continue taking partial derivatives of our functions,
and we can also consider higher derivatives when there are more variables:

Example

Calculate fxxyz(x , y , z) for f (x , y , z) = sin(3x + yz).

We have:

fx(x , y , z) = 3 cos(3x + yz)

⇒ fxx(x , y , z) = −9 sin(3x + yz)

⇒ fxxy (x , y , z) = −9z cos(3x + yz)

⇒ fxxyz(x , y , z) = −9 cos(3x + yz) + 9yz sin(3x + yz)

Clairaut’s Theorem, Revisited

By the way, Clairaut’s Theorem applies to these higher derivatives, too.
For example, if fxxy , fxyx , and fyxx are all continuous, then they are all
equal. A similar statement holds for, e.g. fxyz , fxzy , fyxz , fyzx , fzxy , and
fzyx . This can save you a lot of calculation time!
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Exercises

1. Let f (x , y , z) = exy ln(z). Complete the example in the slides by
calculating fx(x , y , z) and fz(x , y , z).

2. Let f (x , y) = y arcsin(xy). Calculate fy (1, 1/2).

3. Let x2 − y2 + z2 − 2z = 4. Use implicit differentiation to calculate
∂z
∂x and ∂z

∂y .

4. Calculate all the second-order partial derivatives of
f (x , y) = ln(2x + 3y). Does Clairaut’s theorem hold?

5. Let f (x , y) = sin(2x + 5y). Calculate fyxy (x , y).

6. Recall that the derivative fxy (x , y) may be written in Leibniz

notation as ∂2f
∂y∂x . How do we write fxxyx(x , y) in Leibniz notation?

Solutions

1. fx(x , y , z) = yexy ln(z); fz(x , y) = exy

z .

2. fy (1, 1/2) = π+2
√
3

6 , since fy (x , y) = arcsin(xy) + xy√
1−(xy)2

.

3. ∂z
∂x = x

1−z and ∂z
∂y = y

z−1 .

4. fxx(x , y) = −4
(2x+3y)2 , fxy (x , y) = −6

(2x+3y)2 , fyx(x , y) = −6
(2x+3y)2 , and

fyy (x , y) = −9
(2x+3y)2 . Clairaut’s theorem does, indeed, hold, as

fxy (x , y) = fyx(x , y).

5. fyxy (x , y) = −50 cos(2x + 5y).

6. fxxyx(x , y) is ∂4f
∂x∂y∂x2 in Leibniz notation.
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