Overview

14.5: The Chain Rule

Julia Jackson

Department of Mathematic

The University of Oklahoma

Fall 2021

The Chain Rule

As you have seen, the rules for taking partial derivatives carry over quite nicely from single-variable calculus, and thus there is no need to devote weeks to learning new rules of differentiation as there was in single-variable calculus.

However the Chain Rule, as we currently think of it, is a bit limited. We can, of course, use it to calculate the partial derivatives of, for example, $f(x, y)=e^{x y}$. But, suppose that x and y were themselves functions of additional variables, say s and t. How could we calculate a partial derivative of f ? And with respect to what variable(s) may we do so?

In this section, we will explore such problems, and expand the Chain Rule to a more general version that will better suit us in this new multivariable world.

Single-Variable Functions

Recall the Chain Rule for single-variable functions:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(g(t))=f^{\prime}(g(t)) g^{\prime}(t)
$$

There is another way that this rule is commonly stated: If x is the function $g(t)$, then the Chain Rule tells us how to differentiate $f(x)$ with respect to t. That is, it tells us:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(x)=f^{\prime}(x) x^{\prime}(t)
$$

Since the primes here are a bit ambiguous (as the first denotes the derivative of f with respect to x, and the second denotes the derivative of x with respect to t), this is often written:

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\mathrm{d} f}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

This latter form will connect very nicely to the expanded form of the Chain Rule we will soon introduce.

Chain Rule, Case 1

With this setup in mind, consider the following problem: Let $f(x, y)=x^{2} y+3 x y^{4}$, where $x(t)=\sin (2 t)$ and $y(t)=\cos (t)$. Calculate $\frac{\mathrm{d} f}{\mathrm{~d} t}$.

Note that this has the same flavor as the standard chain rule problem from single-variable calculus: we want the derivative of the function $f(x, y)$ when x and y are themselves functions of a third variable, t.

Note also that we want the ordinary derivative of f with respect to t, not the partial derivatives of f with respect to x and y. Why? Well, since x and y are just functions of t, f is ultimately itself a function of just one variable: t !

Chain Rule, Case 1, cont.

The Chain Rule, Case 1: Suppose that $f(x, y)$ is a differentiable function of x and y, and $x=x(t)$ and $y=y(t)$ are differentiable functions of t. Then f is also a differentiable function of t, with:

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

Note the similarity between this version of the Chain Rule and the one from single-variable calculus above!

Let's try this out on the problem above.

Chain Rule, Case 1, cont.

The most obvious way to attack this problem is to substitute $\sin (2 t)$ and $\cos (t)$ in for x and y, giving:

$$
f(t)=\sin ^{2}(2 t) \cos (t)+3 \sin (2 t) \cos ^{4}(t)
$$

Using several Chain Rules and two product rules, we have:

$$
\begin{gathered}
\frac{\mathrm{d} f}{\mathrm{~d} t}=4 \sin (2 t) \cos (2 t) \cos (t)-\sin ^{2}(2 t) \sin (t)+6 \cos (2 t) \cos ^{4}(t) \\
-12 \sin (2 t) \cos ^{3}(t) \sin (t)
\end{gathered}
$$

If you did this out by hand, you probably noticed that this problem has a lot of moving parts, even though $f(x, y)$ is a fairly simple function. It would be really nice to have a method that makes things quicker and more reliable by removing some of this complexity. This is the Chain Rule.

Example

Calculate $\frac{\mathrm{d} f}{\mathrm{~d} t}$ where $f(x, y)=x^{2} y+3 x y^{4}, x(t)=\sin (2 t)$, and $y(t)=\cos (t)$. Write your final answer in terms of the variable t.

Using the Chain Rule, we have:

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t}= & \frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
= & \left(2 x y+3 y^{4}\right)(2 \cos (2 t))+\left(x^{2}+12 x y^{3}\right)(-\sin (t)) \\
= & \left(2 \sin (2 t) \cos (t)+3 \cos ^{4}(t)\right)(2 \cos (2 t)) \\
& \quad+\left(\sin ^{2}(2 t)+12 \sin (2 t) \cos ^{3}(t)\right)(-\sin (t))
\end{aligned}
$$

Compare this with our answer above to see that we got the same thing, but with much less mental effort.

Further Expanding the Chain Rule

We have managed to expand the chain rule a little, but only just a little: so far we only know that we can take the ordinary derivative of a two-variable function $f(x, y)$ when x and y are themselves single-variable functions of t. This raises some key questions: what if x and y are multivariable functions? And, is there a version of the Chain Rule for functions of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of more than two variables?

We address the former first, and then the latter.

The Chain Rule, Case 2, cont.

To remember this, consider the following tree diagram:

To take the partial derivative of z with respect to, say, t, follow every path from z to t in the tree, multiplying the partial derivatives along a given path. The partial derivative is the sum all the products obtained in this way.

The Chain Rule, Case 2: Suppose that $f(x, y)$ is a differentiable function of x and y where $x=g(s, t)$ and $y=h(s, t)$ are themselves differentiable functions of s and t. Then:

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}
$$

An analogous statement holds for $\frac{\partial f}{\partial t}$.

Example

Let $f(x, y)=e^{x} \sin (y), x(s, t)=s t^{2}$, and $y(s, t)=s^{2} t$. Calculate $\frac{\partial f}{\partial s}$.
Write your final answer in terms of the variables s and t.
We have:

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& =\left(e^{x} \sin (y)\right)\left(t^{2}\right)+\left(e^{x} \cos (y)\right)(2 s t) \\
& =t^{2} e^{s t^{2}} \sin \left(s^{2} t\right)+2 s t e^{s t^{2}} \cos \left(s^{2} t\right)
\end{aligned}
$$

The General Chain Rule

There's no reason to limit f to two variables, and no need to limit those variables themselves to two variables. Thus, here is a general version of the Chain Rule:

The Chain Rule: Suppose that f is a differentiable function of the variables $x_{1}, x_{2}, \ldots, x_{m}$, and each x_{i} is itself a differentiable function of $t_{1}, t_{2}, \ldots, t_{n}$. Then:

$$
\frac{\partial f}{\partial t_{j}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{j}}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{j}}+\cdots+\frac{\partial f}{\partial x_{m}} \frac{\partial x_{m}}{\partial t_{j}}
$$

To remember this, you can use a tree diagram in the same way as we did above. See the example below.

Example, cont.

Reading the diagram exactly as before, we have:

$$
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s}
$$

giving:

$$
\frac{\partial u}{\partial s}=\left(4 x^{3} y\right)\left(r e^{t}\right)+\left(x^{4}+2 y z^{3}\right)\left(2 r s e^{-t}\right)+\left(3 y^{2} z^{2}\right)\left(r^{2} \sin (t)\right)
$$

Now, note that we have:

$$
x(2,1,0)=2 \quad y(2,1,0)=2 \quad z(2,1,0)=0
$$

Therefore, plugging in we have:

$$
\left.\frac{\partial u}{\partial s}\right|_{(r, s, t)=(2,1,0)}=(64)(2)+(16+0)(4)+(0)(0)=192
$$

Let $u(x, y, z)=x^{4} y+y^{2} z^{3}$, with $x(r, s, t)=r s e^{t}, y(r, s, t)=r s^{2} e^{-t}$, and $z(r, s, t)=r^{2} s \sin (t)$. Evaluate $\frac{\partial u}{\partial s}$ at $r=2, s=1$, and $t=0$.

We begin by drawing a tree diagram:

Exercises

Solutions

1. Let $z(x, y)=x y^{3}-x^{2} y, x(t)=t^{2}+1$, and $y(t)=t^{2}-1$. Calculate $\frac{\mathrm{d} z}{\mathrm{~d} t}$ in two different ways: by first substituting $x(t)$ and $y(t)$ into z; and second by using the Chain Rule. How do your answers compare?
2. Let $z(x, y)=(x-y)^{5}, x(s, t)=s^{2} t$, and $y(s, t)=s t^{2}$. Calculate $\frac{\partial z}{\partial t}$.
3. Use a tree diagram to write out the Chain Rule for $\frac{\partial f}{\partial r}$, where f is a function of x and $y ; x=x(r, s, t)$; and $y=y(r, s, t)$.
4. Let $z=x^{4}+x^{2} y, x=s+2 t-u$, and $y=s t u^{2}$. Calculate $\frac{\partial z}{\partial s}$ when $s=4, t=2$, and $u=1$.
5. Either method should yield:
$\frac{\mathrm{d} z}{\mathrm{~d} t}=(2 t)\left(\left(t^{2}-1\right)^{3}-2\left(t^{2}+1\right)\left(t^{2}-1\right)+3\left(t^{2}+1\right)\left(t^{2}-1\right)^{2}-\left(t^{2}+1\right)^{2}\right)$
6. $\frac{\partial z}{\partial t}=5\left(s^{2} t-s t^{2}\right)^{4}\left(s^{2}-2 s t\right)$
7. The tree is left to you (though you can certainly check with me to verify your result). The Chain Rule is:

$$
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}
$$

4. $\left.\frac{\partial z}{\partial s}\right|_{(s, t, u)=(4,2,1)}=1582$
