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Overview

We now know a lot about multivariable functions: how to evaluate them;
how to calculate their limits; how to take their derivatives in any
direction; and how to estimate their values using tangent planes.
Mimicking our work in single-variable calculus, in the last two sections of
this chapter we turn to optimization, i.e., maximizing and minimizing
such functions.

We will begin by working out how to find the local and absolute extrema
(maxima and minima) of two-variable functions by generalizing the
concept of critical points to three dimensions. We will then turn to
optimization problems.
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Local Maxima and Minima

A function f (x , y) has a local maximum (resp. local minimum) at
(a, b) if f (x , y) ≤ f (a, b) (resp. ≥ f (a, b)) for all (x , y) close to (a, b).
f (a, b) is called a local maximum (resp. minimum) value.



The Picture

Here, f (1, 3) is a local minimum of f , with local minimum value
4 = f (1, 3).



Critical Points

Recall that if a single-variable function f (x) has a local maximum or
minimum at x = a, then f ′(a) = 0 or f ′(a) does not exist. If either of the
latter is true, we call x = a a critical number of f (x). A similar result is
true for two-variable functions. We begin with a definition.

Definition: The point (a, b) is called a critical point of the function
f (x , y) if both fx(a, b) = 0 and fy (a, b) = 0, or if either of fx(a, b) or
fy (a, b) does not exist.



Example

Find the critical points of f (x , y) = x2 + y2 − 2x − 6y + 14.

By the previous slide, a point P is a critical point of f (x , y) if either one
of the partial derivatives of f (x , y) does not exist at P, or if both of
these partial derivatives are zero at P. Therefore, we begin by computing
the partial derivatives of f (x , y):

fx(x , y) = 2x − 2 and fy (x , y) = 2y − 6

Since fx(x , y) and fy (x , y) are polynomials, they exist at every point in
R2. On the other hand, by inspection we see that fx(x , y) = 0 when
x = 1 and fy (x , y) = 0 when y = 3. Therefore, given the requirement
that both partial derivatives must be zero at the same time at a critical

point, we see that the lone critical point of f (x , y) is (1, 3) .



A Key Result

The utility of critical points is completely analogous to the role of critical
numbers for single-variable functions.

Theorem: If f (x , y) has a local maximum or minimum at (a, b), then f
has a critical point there.

To extend the analogy even further, when a single-variable function f (x)
has critical number x = a, the slope of the line tangent to f is horizontal
(or the tangent line does not exist). When a two-variable function f (x , y)
has a critical point at (a, b), the plane tangent to the graph of f is flat.



Important Note
Just as in the single-variable case, having a critical point at (a, b) does
not automatically mean that the function has a local maximum or
minimum there. For example, consider the critical point at the origin of
this function:



Saddle Points

A saddle point is a critical point of f (x , y) that corresponds to neither a
local minimum or local maximum of f .



A Key Question

To summarize, local minima and maxima must occur at critical points,
but not every critical point is a local minimum or local maximum.

The question that now confronts us is: given a set of critical points, how
can we decide if each is a local minimum, local maximum, or neither?
The answer lies in the Second Derivative Test.



The Second Derivative Test

Suppose that (a, b) is a critical point of f (x , y) and that the second
partial derivatives of f are continuous near (a, b). Let:

D(a, b) = fxx(a, b)fyy (a, b)− [fxy (a, b)]2

If:

1. D(a, b) > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

2. D(a, b) > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

3. D(a, b) < 0, then (a, b) is a saddle point of f .

4. D(a, b) = 0, no conclusion may be drawn from this test.

To recall the formula for D(a, b), it helps to think of it as a determinant:

D(a, b) =

∣∣∣∣∣fxx(a, b) fxy (a, b)

fyx(a, b) fyy (a, b)

∣∣∣∣∣



Example

Does the critical point (1, 3) of f (x , y) = x2 + y2 − 2x − 6y + 14 that we
discovered above correspond to a local minimum value of f (x , y), a local
maximum value of f (x , y), or neither?

The second derivative test from the previous slide will likely answer this
question for us. Therefore, we begin by finding the necessary ingredients
for this test:

fx(x , y) = 2x − 2 =⇒ fxx(x , y) = 2 and fxy (x , y) = 0

=⇒ fxx(1, 3) = 2 and fxy (1, 3) = 0

and

fy (x , y) = 2y − 6 =⇒ fyy (x , y) = 2

=⇒ fyy (1, 3) = 2



Example, cont.

Now we apply the second derivative test to the point (1, 3):

D(1, 3) = fxx(1, 3)fyy (1, 3)− [fxy (1, 3)]2

= 2 · 2− 02

= 4− 0 = 4

Since D(1, 3) > 0 and fxx(1, 3) = 2 > 0, by the second derivative test we

have that f (1, 3) = 4 is a local minimum value of f (x , y).



Example

Find the local minimum values, local maximum values, and the saddle
points of f (x , y) = x4 + y4 − 4xy + 1.

We know from above that local minima, local maxima, and saddle points
of f (x , y) must occur at critical points of f (x , y). Therefore, we begin by
finding these critical points, as we did previously:

fx(x , y) = 4x3 − 4y and fy (x , y) = 4y3 − 4x

Since both of these partial derivatives are polynomials, they are defined
on all of R2. Therefore, the critical points of f (x , y) must occur at the
points where both partial derivatives are zero at the same time. In other
words, we want to solve the system of equations:

4x3 − 4y = 0 (1)

4y3 − 4x = 0 (2)

Take a moment, and see if you can solve this system.



Example, cont.

Here’s my solution to the system of equations on the previous slide.
First, note that:

(1)⇒ y = x3

Therefore, plugging this information into the second equation, we obtain:

(2) and y = x3 ⇒ 4(x3)3 − 4x = 0

⇒ x9 − x = 0

⇒ x(x8 − 1) = 0

⇒ x = 0, x = 1, or x = −1

Therefore, if (1) and (2) are true at the same time, we must have that
x = 0 or x = ±1. But these aren’t critical points, they’re just x-values.
How can we get from these to critical points? Take a moment to see if
you can work this out.



Example, cont.

Let’s find the critical points. We know from above that at any critical
point, we must have y = x3. Therefore:

y = x3 and x = 0⇒ y = 0

y = x3 and x = 1⇒ y = 1

y = x3 and x = −1⇒ y = −1

Therefore, the critical points of f (x , y) are (0, 0), (1, 1), and (−1,−1)
(By the way, you can quickly check that each of these truly is a critical
point of f (x , y); how?).



Example, cont.

Now that we have the critical points, we use the Second Derivative Test
to classify them. Let’s begin by finding the ingredients for the test:

fx(x , y) = 4x3 − 4y =⇒ fxx(x , y) = 12x2 and fxy (x , y) = −4

fy (x , y) = 4y3 − 4x =⇒ fyy (x , y) = 12y2

Now we approach each critical point in turn. Let’s begin with (0, 0):

D(0, 0) = fxx(0, 0)fyy (0, 0)− [fxy (0, 0)]2

= 0 · 0− (−4)2 = 0− 16 = −16 < 0

Therefore, by the second derivative test, (0, 0) is a saddle point of
f (x , y). A similar calculation shows that f (−1,−1) = −1 and
f (1, 1) = −1 are local minimum values of f (x , y).
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The Setup

Up to this point, we have talked exclusively about local maxima and
minima, but this raises an interesting related question: does a function
have a global or absolute maximum or minimum?

In general, of course, the answer is no; most functions are not bounded
above or below. However, there are situations in which functions are
guaranteed to have absolute maxima and minima, and that is what we’ll
talk about now.



Closed Sets

A closed set in R2 is a set of points that includes its boundary. Here are
some examples:



The Key Result

Theorem (Extreme Value Theorem for Functions of Two Variables): If
f (x , y) is continuous on a closed, bounded set A in R2, then f attains an
absolute minimum and absolute maximum value in A.



Finding Absolute Minima and Maxima

Now we know for sure that a continuous f (x , y) has an absolute
minimum and maximum on a closed, bounded set D. But how do we find
them?

Well, they must occur either in the interior of A or on its boundary. Local
extrema on the interior of A must occur at critical points, for the same
reasons that local extrema of f (x , y) occur at critical points when we
consider f (x , y) globally. To find extrema on the boundary of A, we will
utilize the closed-interval test for extrema from single-variable calculus.

Let us first formally state this method, and then see how it works with an
example.



Finding Absolute Minima and Maxima, cont.

To find the absolute minimum and maximum values of a continuous
function f (x , y) on a closed, bounded set A:

1. Find the values of f (x , y) at the critical points of f (x , y) in A;

2. On each boundary component of A, f (x , y) can always be thought
of as a single-variable function, due to the consistent relationship
between x and y on such a component. Furthermore, there will
always be strict restrictions on the values of x , y , or both on each
boundary segment, given that A is a bounded set. Therefore, to find
the extreme values of f (x , y) on the boundary of A, we use the
closed interval test from single-variable calculus on each of these
boundary segments;

3. The absolute maximum and minimum values of f (x , y) on A are the
largest and smallest of the values of f (x , y) obtained in the previous
two steps, respectively.



Example

Find the absolute minimum and maximum values of
f (x , y) = x2 − 2xy + 2y on the region R bounded by the rectangle{

(x , y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2
}

= [0, 3]× [0, 2]

We will proceed as indicated on the previous slide. To help us get
started, let us begin by drawing R:



Example, cont.

Now, let’s find the critical points of f (x , y) in exactly the same way we
did previously. We have:

fx(x , y) = 2x − 2y and fy (x , y) = −2x + 2

Notice that fx(x , y) and fy (x , y) are both polynomials, so they are
defined at every point in R2. Therefore, critical points of f (x , y) can
occur only when both fx(x , y) = 0 and fy (x , y) = 0.

By inspection, fy (x , y) = 0 when x = 1 and fy (x , y) = 0 when x = y .
Therefore, both partial derivatives are zero at the same time only at the
point (1, 1), the lone critical point of f (x , y). Notice that (1, 1) is,
indeed, inside R. Therefore, as suggested in the method we are following,
we evaluate:

f (1, 1) = 1



Example, cont.

Next we must find the extrema of f (x , y) on the boundary of R. As
indicated, we will always be able to use the closed-interval test from
single-variable calculus to help us. Let’s see how this works.

Let’s begin by seeking the maximum and minimum values of f (x , y) on
the boundary segment L1 of R. L1 is the line segment y = 0, where
0 ≤ x ≤ 3. Therefore, when we restrict the domain of f (x , y) to just this
one line segment, we see that, on L1, we have:

f (x , y) = f (x , 0) = x2

with 0 ≤ x ≤ 3. Therefore, what we are looking to find are the absolute
maximum and minimum values of the single-variable function g1(x) := x2

on the interval [0, 3]. Now we see the closed-interval test emerging!



Example, cont.

As a reminder, the closed-interval test from single-variable calculus tells
us that if we wish to find the absolute maximum and minimum values of
the function g(x) on the interval [a, b], then we evaluate g(x) at x = a,
x = b, and any critical numbers of g(x) on the interval [a, b]. The largest
value returned is the absolute maximum value of g(x) on [a, b], and the
smallest value returned is the absolute minimum of g(x) on [a, b].

Let’s apply this test to the current situation.



Example, cont.

Remember, we’re trying to find the absolute minimum and maximum
values of g1(x) := x2 on the interval [0, 3]. We begin by finding any
critical numbers of g1(x) on [0, 3]. We have:

g ′1(x) = 2x

Since g ′1(x) is a polynomial, it is defined everywhere, so that the only
critical number of g1(x) occurs when g ′1(x) = 0, i.e. when x = 0, by
inspection.

Evaluating g1(x) at the critical number x = 0 and at the endpoints of
the interval [0, 3], we obtain:

g1(0) = 0 and g1(3) = 9

Therefore, along L1, f (x , y) (that is to say, g1(x)) has an absolute
minimum value of f (0, 0) = g1(0) = 0, and an absolute maximum value
of f (3, 0) = g1(3) = 9.



Example, cont.

We proceed in a nearly identical way along L2, L3, and L4, and find that:

I Along L2, f (x , y) has an absolute minimum value of f (3, 2) = 1 and
an an absolute maximum value of f (3, 0) = 9;

I Along L3, f (x , y) has an absolute minimum value of f (2, 2) = 0 and
an an absolute maximum value of f (0, 2) = 4;

I Along L4 f (x , y) has an absolute minimum value of f (0, 0) = 0 and
an an absolute maximum value of f (0, 2) = 4.

(Take some time to verify these!)

Therefore, comparing the values of f (x , y) that we found at the critical
points of f (x , y) in R and on the boundary of R, We find at last that
f (x , y) has an absolute maximum value of f (3, 0) = 9 and an absolute
minimum value of f (0, 0) = f (2, 2) = 0 on R.



Table of Contents

Critical Points and Local Extrema

Absolute Extrema

Optimization

Exercises



Optimization

In our final extension of maximum/minimum problems from
single-variable calculus, we turn at last to optimization.

You may recall from single-variable calculus that optimization problems
essentially boil down to finding the absolute maximum or minimum value
of a two-variable function, given some constraint on those variables. For
example, a couple of common problems include finding the largest area of
a rectangle with a given perimeter; or the smallest sum of a pair of
numbers whose product is a given number.

Here in multivariable calculus, we will be doing essentially the same thing
— calculating the absolute maximum or minimum value of a
three-variable function, subject to a constraint on those variables — in
almost exactly the same way! Let’s dive right in.



Example

A rectangular box without a lid is to be made from 12m2 of cardboard.
Find the maximum volume of such a box.

We will proceed largely by imitating the procedure from single-variable
calculus. With that in mind, let us begin by drawing the box:



Example, cont.

We wish to calculate the maximum volume of this box. Given our labels
in the diagram, this means that we wish to find the maximum value of
the three-variable function:

V (x , y , z) := xyz

Of course, as things stand now, this function has no maximum! Indeed, if
we were to let x , y , and z grow without bound, V (x , y , z) would also
grow arbitrarily large.

This is where our constraint comes in. The restriction on the variables
given in the statement of the problem is what will allow a maximum
value to appear. In this case, we are told that, first, the box on the
previous slide has no top; and second, this box is made out of 12m2 of
material. In other words, the surface area of the box must be 12m2.
These together give us our constraint on x , y , and z :

xy + 2yz + 2xz = 12



Example, cont.

We now need to incorporate this constraint into our function somehow.
The most straightforward way to do so is as follows: We begin by solving
the constraint equation for one of the variables (in this case, I have
chosen z , although any of the three variables would be fine in this case):

xy + 2yz + 2xz = 12 ⇒ z =
12− xy

2y + 2x

and then we substitute z = 12−xy
2y+2x in for z in the function V (x , y , z), to

obtain:

V (x , y , z) = xyz and z =
12− xy

2y + 2x

⇒ V (x , y) =
xy(12− xy)

2y + 2x
=

12xy − x2y2

2y + 2x

All of this done, we are now in a position to compute the absolute
maximum value of V (x , y) using the methods we have learned in this
section.



Example, cont.

Now’s a good time to take a quick look at what values x and y can take
on. Notice that x and y are both lengths, and therefore both must be
positive numbers. Furthermore, while there are genuine engineering
constraints on what the length and the width of the cardboard box can
realistically be, there’s no numerical constraint, so that x and y can both
be any positive numbers at all, as far as we’re concerned.

Therefore, we are looking for the absolute maximum value of of V (x , y)
on the set

B :=
{

(x , y) ∈ R2 | x , y > 0
}

Since B is neither closed nor bounded, our absolute maximum value must
appear at a critical point of V (x , y).



Example, cont.

Hiding some work, we have:

Vx(x , y) =
y2(12− 2xy − x2)

2(x + y)2
, Vy (x , y) =

x2(12− 2xy − y2)

2(x + y)2

Recall that a critical point of V (x , y) occurs when either Vx(x , y) or
Vy (x , y) is undefined; or when Vx(x , y) and Vy (x , y) are both zero at the
same time.

This is the first time that we have encountered a case where Vx(x , y) and
Vy (x , y) aren’t defined on all of R2! By looking at the denominators of
both partial derivatives, we see that both are undefined whenever
x + y = 0 — that is, both partial derivatives are undefined at
infinitely-many points! However, notice that:

x + y = 0 ⇒ x = −y

Therefore, since x and y must both be positive numbers, none of these
critical points of V (x , y) occur in B, so we can remove them all from
consideration.



Example, cont.

Therefore, the critical point(s) we are interested in must occur when
Vx(x , y) and Vy (x , y) are zero at the same time. Let’s begin with
Vx(x , y):

y2(12− 2xy − x2)

2(x + y)2
= 0

⇒ y2(12− 2xy − x2) = 0

⇒ y2 = 0 or 12− 2xy − x2 = 0

⇒ y = 0 or 12− 2xy − x2 = 0

In a nearly identical calculation, setting Vy (x , y) equal to zero gives that
x = 0 or 12− 2xy − y2 = 0.



Example, cont.
Now, because we are only interested in critical points where x and y are
both positive, we can throw out the cases x = 0 and y = 0 from above.
Therefore, a critical point for V (x , y) occurs in B exactly when the
following system of equations is true:

12− 2xy − x2 = 0 (1)

12− 2xy − y2 = 0 (2)

There are many ways to solve this system, but here’s one that I find
particularly clean. Note that:

(1) ⇒ x2 = 12− 2xy and (2) ⇒ y2 = 12− 2xy

Therefore,

(1) and (2) ⇒ x2 = y2

⇒ x = ±y
⇒ x = y

where the final equation holds since x and y must both be positive
numbers.



Example, cont.

To finish solving the system, notice that:

(1) and x = y ⇒ 12− 2x2 − x2 = 0

⇒ 12− 3x2 = 0

⇒ x = 2

Therefore, the only critical point of V (x , y) inside B is the single point
(2, 2), and thus, the maximum volume of the box is:

V (2, 2) = 4m3



Table of Contents

Critical Points and Local Extrema

Absolute Extrema

Optimization

Exercises



Exercises

1. Find the critical points of f (x , y) = y2 − x2. Then determine if each
corresponds to a local minimum, local maximum, or saddle point of
f (x , y).

2. Find the absolute minimum and maximum values of
f (x , y) = x2 + y2 − 2x on the closed triangular region T with
vertices (2, 0), (0, 2), and (0,−2).

3. Find the shortest distance from the point P = (1, 0,−2) to the plane
T given by x + 2y + z = 4 [Hint: instead of minimizing the distance
d between P and any point in T , you could minimize the square of
this distance, d2 (why is this?). This will shorten your calculations.].



Solutions

1. The only critical point of f (x , y) is (0, 0). It is a saddle point of
f (x , y).

2. The absolute maximum value of f (x , y) on T is
f (0, 2) = f (0,−2) = 4, and the absolute minimum value of f (x , y)
on T is f (1, 0) = −1. [The points you should have checked are:
(1, 0), (0,−2), (2, 0), (0, 2), (0, 0), (3/2,−1/2), and (3/2, 1/2)].

3. The minimum distance from P to T is 5√
6

. This is the distance

from the point P to the point
(

11
6 ,

5
3 ,
−7
6

)
in T .
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