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Chapter Overview

In the previous chapter we learned the theory of differentiation for
surfaces in R3. Since such surfaces arise as the graphs of two-variable
functions, we in fact learned the theory of differentiation for such
functions, with functions of more variables coming along as a free bonus.
In this chapter we complete our study of the calculus of surfaces by
exploring the theory of integration of two-variable functions. We’ll also
spend some time on the theory of integration of three-variable functions,
but the theory of integration of functions of more variables won’t come
along quite as easily as it did for differentiation. That said, the
foundational principles still apply for such functions, which will give us a
basic idea of how to integrate them in special circumstances, as well.

We will first learn the theory of integration of two-variable functions and
discuss mathematical applications of this theory, and then repeat the
process for three-variable functions. Along the way we will learn two new
coordinate systems for R3 which are useful on their own, but will also
prove invaluable for evaluating such integrals.



Section Overview

In the first part of this section, we will recap the definition of the definite
integral of a single-variable function, and then extend this idea to define
the definite double integral of a two-variable function over a rectangle.
We will then use this definition to estimate the value of such an integral.

Once we get a handle on this definition, we will then turn to the task of
evaluating such definite integrals precisely (not just estimating them) by
developing a new technique to do so: using so-called iterated integrals.
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The Definite Integral

Recall that if we have a continuous function f (x) on an interval [a, b], we
can estimate the signed area between the graph of f (x , y) and the x-axis
on this interval. We first divide [a, b] into n subintervals of length ∆x ,
and then choose test points x∗i in each subinterval (typically the left- or
right-hand endpoints of each subinterval). We then construct boxes
above the ith subinterval of height f (x∗i ). The area of each box is given
by f (x∗i )∆x , so that an estimate of the total area under the curve is
given by adding up the areas of the boxes:∫ b

a

f (x)dx ≈
n∑

i=1

f (x∗i )∆x

(See the diagram on the next slide as further reminder)



The Definite Integral, cont.



The Definite Integral, cont.

If we increase the number of boxes, our estimate improves. Thus, we
define the definite integral as follows:∫ b

a

f (x)dx = lim
n→∞

n∑
i=1

f (x∗i )∆x



Multivariable Functions

Now let us turn to a function f (x , y) of two variables. Suppose that
f (x , y) is continuous on the rectangle R = [a, b]× [c , d ]. Analogous to
the single-variable case, we could then ask what the signed volume V
between the graph of f (x , y) and the xy -plane is:



Multivariable Functions, cont.

We proceed in much the same way as the single-variable case. We begin
by dividing the rectangle R into subrectangles. We do this by breaking
[a, b] into m subintervals of length ∆x = (b − a)/m, and [c , d ] into n
subintervals of length ∆y = (d − c)/n:



Multivariable Functions, cont.

We label each subrectangle Rij for i and j between m and n respectively,
as above. From each Rij we choose a sample point (x∗ij , y

∗
ij ), and then

construct a box with base Rij and uniform height f (x∗ij , y
∗
ij ). The volume

of such a box is
f (x∗ij , y

∗
ij )∆x∆y



Multivariable Functions, cont.
The total signed volume V between the rectangle R in the xy -plane and
the graph of f (x , y) can then be estimated by computing total signed
volume inside all of these boxes:

V ≈
m∑
i=1

n∑
j=1

f (x∗ij , y
∗
ij )∆x∆y



Multivariable Functions, cont.

Now, as we let the number of boxes increase (i.e. as m and n increase),
the estimate of V improves. Therefore, we see that:

V = lim
m,n→∞

m∑
i=1

n∑
j=1

f (x∗ij , y
∗
ij )∆A

(where ∆A is the product ∆x∆y).

This volume is what we call the double integral of f (x , y) over R,
defined as follows, based on our work:∫∫

R

f (x , y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f (x∗ij , y
∗
ij )∆A

Again, this gives the total signed volume in R3 between the rectangle R
in the xy -plane and the graph of the function f (x , y).



Example
Estimate the signed volume of the solid that lies between the square
R = [0, 2]× [0, 2] and the elliptic paraboloid z = 16− x2 − 2y2 by
dividing R into four equal subsquares and choosing the sample point in
each to be its upper-right corner.

First, note that by definition the signed volume of the described solid is∫∫
R

(16− x2 − 2y2) dA

Now, let’s sketch R, its subsquares, and the sample points:



Example, cont.

For convenience, let’s give the integrand a name:

f (x , y) := 16− x2 − 2y2

Each subsquare Rij has length and width 1, for a total base area of 1.
Therefore, the signed volume between the graph of f (x , y) and a given
subrectangle Rij is approximately 1 · f (x∗ij , y

∗
ij ), where (x∗ij , y

∗
ij ) is the point

in the upper-right corner of Rij . Thus,
∫∫

R
(16− x2 − 2y2) dA can be

approximated by adding up these estimates, as follows:∫∫
R

(16− x2 − 2y2) dA ≈ f (1, 1) · 1 + f (1, 2) · 1

+ f (2, 1) · 1 + f (2, 2) · 1

= 13 + 7 + 10 + 4 = 34



Example, cont.

Here is a picture of what we have just described:



Can We Do Better?

We now know how to estimate the value of a double integral of a
two-variable function over a rectangle, and, believe it or not, this is quite
an important skill. In practice, many integrals (single, double, or
otherwise) cannot be computed precisely in a nice, closed form, so
approximation is a commonly-used tool (hence our devoting some time to
learning this skill). In fact, it’s important enough that there are entire
courses which expand on this idea and related problems: courses in what
is called numerical analysis.

However, in many problems we’d often like to do better than an
estimate, if we can. Thus, for the remainder of this and subsequent
sections in this chapter, we will learn to evaluate double integrals
precisely using what are called iterated integrals.



Table of Contents

The Double Integral

Iterated Integrals

Exercises



The Setup

If f (x , y) is a continuous function on the rectangular region
R = [a, b]× [c , d ] in xy -plane, and we wish to calculate the net signed
volume between R and the graph of f (x , y), we learned above that we
call this volume the double integral of f (x , y) over R, and can evaluate
it as follows: ∫∫

R

f (x , y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f (x∗ij , y
∗
ij )∆A

Therefore, calculating net signed volume between R and the graph of
f (x , y) amounts to evaluating the limit on the right. If you think this
looks like a total nightmare, in general it absolutely is. So, we would like
to find something more efficient. That’s our next goal.



Partial Integrals

Let’s begin with some notation. We write:∫ d

c

f (x , y) dy

to mean that we hold x fixed and evaluate the definite integral of f (x , y)
with respect to y in the usual manner from single-variable calculus, for y
between c and d . We call this the partial integral of f (x , y) with
respect to y . We denote the partial integral of f (x , y) with respect to x
similarly, with dx instead of dy .

Notice that there is a strong analogy between the partial derivative of
f (x , y) with respect to x or y , and these partial integrals.



Example

Evaluate
∫ 3

1
(x2 + 2xy + y2) dy .

Remember: we think of x as a constant here and evaluate this definite
integral with respect to y . Thus, by definition we have:

∫ 3

1

(x2 + 2xy + y2) dy =

(
x2y + xy2 +

y3

3

)∣∣∣∣∣∣
y=3

y=1

= (3x2 + 9x + 9)−
(
x2 + x +

1

3

)
= 2x2 + 8x +

26

3



Iterated Integrals

With this in mind, let us to return to our original problem. To evaluate∫∫
R
f (x , y) dA where R = [a, b]× [c , d ], it turns out that we can

compute it as an iterated integral, i.e., as a pair of partial integrals,
working from the inside out:∫∫

R

f (x , y) dA =

∫ b

a

∫ d

c

f (x , y) dy dx =

∫ b

a

[∫ d

c

f (x , y) dy

]
dx



Example

Evaluate
∫∫

R
x2y dA for R = [1, 2]× [0, 3].

From the previous slide, we have:∫∫
R

x2y dA =

∫ 2

1

[∫ 3

0

x2y dy

]
dx

=

∫ 2

1

x2 y2

2

∣∣∣∣∣
y=3

y=0

 dx

=

∫ 2

1

9x2

2
dx

=
3x3

2

∣∣∣∣∣
2

1

=
21

2



Key Point

Let’s evaluate the iterated integral from the previous slide in the opposide
order: ∫ 3

0

[∫ 2

1

x2y dx

]
dy =

∫ 3

0

 x3

3
y

∣∣∣∣∣
x=2

x=1

 dy

=

∫ 3

0

7y

3
dy

=
7y2

6

∣∣∣∣∣
3

0

=
21

2

We get the same result! This is no accident.



Fubini’s Theorem

Fubini’s Theorem: Suppose that f (x , y) is continuous on the rectangle
R = [a, b]× [c , d ]. Then:∫∫

R

f (x , y) dA =

∫ b

a

∫ d

c

f (x , y) dy dx =

∫ d

c

∫ b

a

f (x , y) dx dy

Fubini’s Theorem means that you can choose the order of integration,
which can be quite handy in some problems!



Example

Evaluate
∫∫

R
y sin(xy) dA where R = [1, 2]× [0, π].

Let’s try integrating with respect to y first, as we first learned to do. We
have: ∫∫

R

y sin(xy) dA =

∫ 2

1

∫ π

0

y sin(xy) dy dx

To complete the integral in this order, we would have to use integration
by parts. In fact, we would have to use it twice (try it!).



Example, cont.

However, Fubini’s theorem tells us that we are free to choose the order of
integration! If we integrate with respect to x first, the problem is much
more straightforward:∫∫

R

y sin(xy) dA =

∫ π

0

∫ 2

1

y sin(xy) dx dy

=

∫ π

0

− cos(xy)
∣∣x=2

x=1
dy

=

∫ π

0

(
− cos(2y) + cos(y)

)
dy

=

[
−1

2
sin(2y) + sin(y)

]∣∣∣∣∣
π

0

= 0



Average Value

The last thing we wish to define is the average value of a function f (x , y)
on a rectangle R in the xy -plane. To get us to the proper definition, let’s
first think carefully about what averages are.

Suppose we have a list of numbers: 9, 8, 9, and 6. The average value of
this list is

9 + 8 + 9 + 6

4
= 8

What this means is that if every number in the list were 8, the sum of
the numbers on the list would not change. So, for example, if these were
scores on quizzes graded out of 10, the student’s average score is 8/10,
i.e., if they had gotten 8/10 on all four quizzes, they would, in some
sense, be doing just as well as with their actual numerical grades.
Averaging is, therefore, one way of smoothing out the noise in a list of
data (though not the best way in all circumstances!).



Average Value, cont.

How does this relate to the average value of a function? Well, we could
think of our list on the previous page as a discrete function f (x), with
domain {1, 2, 3, 4}, and f (1) = 9, f (2) = 8, f (3) = 9, and f (4) = 6.
Then the average value, favg, of f (x) on its domain is, again, 8:

favg =
f (1) + f (2) + f (3) + f (4)

4
= 8

That is, if f (x) = 8 for every x in the domain of f (x), then the sum of all
the values of f (x) wouldn’t change.

But what if f (x) is continuous? For example, if f (x) is continuous on the
interval [a, b], how could we compute its average value on this domain?
We certainly can’t just “add up” every value of f (x) on this interval and
then divide by the number of values... there’s infinitely-many of each!
But there is a sense in which we can.



Average Value, cont.

This is where the definite integral comes in. In some sense,∫ b

a

f (x) dx

is what you get when you “add up” all the values of f (x , y) on the
interval [a, b], and the length of this interval, b − a, is the “number of
values.” Therefore, we define:

favg :=

∫ b

a
f (x) dx

b − a

The effect is the same as in the discrete case: if f (x) were equal to the

constant favg on the entire interval [a, b], then the “sum”
∫ b

a
f (x) dx

wouldn’t change.



Average Value, cont.

With this in mind, how should we define the average value of a
two-variable function f (x , y) on a rectangle R? Well, the same way as
above! In a sense, ∫∫

R

f (x , y) dA

is what we get when we “add up” all the values of f (x , y) on R, and the
total number of values is the area of the rectangle. Therefore, we define
the average value of a function f (x , y) on a rectangle R as:

favg =
1

A(R)

∫∫
R

f (x , y) dA

where A(R) is the area of the rectangle R.



Example

So, for example, we previously found that∫∫
R

x2y dA =
21

2

where R is the rectangle [1, 2]× [0, 3]. Therefore, the average value of
f (x , y) := x2y on this rectangle is:

favg =
1

A(R)

∫∫
R

f (x , y) dA =
1

1 · 3
· 21

2
=

7

2

I’ll leave it to you to check that the double integral of x2y over R is the
same as the double integral of favg over R.
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Exercises

1. Estimate
∫∫

R
(x − 3y2) dA where

R = [0, 2]× [1, 2] =
{

(x , y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2
}

as follows: divide R into four equal rectangles by dividing the
intervals [0, 2] and [1, 2] in half, and constructing rectangles from
these divisions in the obvious way. Then, to carry out your estimate,
let the sample point in each rectangle be its upper-right corner.

2. Repeat the previous exercise, this time letting the sample points be
the lower left corner of each rectangle.

3. Repeat the first exercise, this time letting the sample points be the
center of each rectangle (this is called the Midpoint Rule, akin to
the rule of the same name for single-variable functions).



Exercises, cont.

4. Evaluate
∫∫

R
x2y dA where R = [0, 3]× [1, 2]. Then calculate the

average value of h(x , y) := x2y on R.

5. Calculate the signed volume of the solid that lies between the graph
of f (x , y) = x − 3y2 and the rectangle D = [0, 2]× [1, 2] in the
xy -plane.

6. Find the volume of the solid S bounded by the elliptic paraboloid
x2 + 2y2 + z = 16, the planes x = 2 and y = 2, and the coordinate
planes [Hint: Begin by writing z as a function of x and y , then
express the volume of the solid as a double integral over a rectangle].



Solutions

1.
∫∫

R
(x − 3y2) dA ≈ −634 = −15.75

2.
∫∫

R
(x − 3y2) dA ≈ −354 = −8.75

3.
∫∫

R
(x − 3y2) dA ≈ −958 = −11.875

4.
∫∫

R
x2y dA = 27

2 , and havg = 9
2 .

5. The signed volume of the solid that lies between the graph of
f (x , y) and the rectangle D is

∫∫
D

(x − 3y2) dA = −12

6. The volume of S is
∫ 2

0

∫ 2

0
(16− x2 − 2y2) dy dx = 48 [there are

certainly other iterated integrals that would give us the same
volume].
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