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Overview

In the previous section we learned to evaluate the double integral of a
two-variable function over a rectangular subset of its domain, i.e., to find
the net signed volume of the solid bounded by a rectangle in the xy -plane
and a surface. This raises a question: how could we find the signed
volume of a solid that lies between a surface and some other shape in the
xy -plane? In this and the next section, we will learn techniques for
solving such problems.
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The Setup

Suppose that we wish to find the signed volume of the solid that lies
between the graph of a continuous function f (x , y) and a subset of its
domain in the xy -plane such as the following:

Before we begin solving this problem, we introduce some notation:
borrowing the language and notation of the previous section for this new
problem, we refer to this signed volume as the double integral of f (x , y)
over D: ∫∫

D

f (x , y) dA



The Technique

To evaluate such integrals, we first need some definitions. A region D in
the plane is said to be a type I region if it lies between two continuous
functions of x , i.e.

D =
{

(x , y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)
}

For example:

The Technique, cont.

Analogous to our work over rectangles, we have the following:

If f (x , y) is a continuous function on a type I region D given by

D =
{

(x , y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)
}

then ∫∫
D

f (x , y) dA =

∫ b

a

∫ g2(x)

g1(x)

f (x , y) dy dx

Note: The order of integration matters here! Fubini’s theorem does not
hold for such integrals.

Example

Evaluate I =
∫∫

D
(x + 2y) dA where D is the region in the xy -plane

bounded by the parabolas y = 2x2 and y = 1 + x2.

Let’s first sketch the region D:

Example, cont.

We note, then, that D may be described as a type I region as follows:

D =

{
(x , y)

∣∣∣ − 1 ≤ x ≤ 1, 2x2 ≤ y ≤ 1 + x2
}

Therefore, we have:

I =

∫∫
D

(x + 2y) dA =

∫ 1

−1

∫ 1+x2

2x2

(x + 2y) dy dx

=

∫ 1

−1

(
xy + y2

)∣∣∣∣y=1+x2

y=2x2

dx

=

∫ 1

−1

(
−3x4 − x3 + 2x2 + x + 1

)
dx

=

(
−3

5
x5 − x4

4
+

2

3
x3 +

1

2
x2 + x

)∣∣∣∣∣∣
1

−1

=
32

15



Type II Regions

Of course, our regions might not always be bounded by two functions of
x ; they could, for example, be bounded by two functions of y . More
precisely, a region D in the plane is said to be a type II region if it lies
between two continuous functions of y , i.e.

D =
{

(x , y)|c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y)
}

For example:

Integrals

The method of evaluating a double integral over a type II region is
analogous to evaluating a double integral over a type I region:

If f (x , y) is a continuous function on a type II region D given by

D =
{

(x , y)|c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y)
}

then ∫∫
D

f (x , y) dA =

∫ d

c

∫ h2(y)

h1(y)

f (x , y) dx dy

Again, the order of integration matters; Fubini’s theorem only holds when
integrating over rectangles, not here.

Example

Find the signed volume V of the solid that lies between the paraboloid
z = x2 + y2 and the region D in the xy -plane bounded by the line x = y

2
and the parabola x =

√
y .

Let’s begin by sketching D:

Example, cont.

Now, note that we can think of D as a type II region:

D =

{
(x , y)

∣∣∣∣ 0 ≤ y ≤ 4,
y

2
≤ x ≤ √y

}

Therefore, we have:

V =

∫∫
D

(x2 + y2) dA =

∫ 4

0

∫ √y

y/2

(x2 + y2) dx dy

=

∫ 4

0

(
x3

3
+ xy2

)∣∣∣∣∣∣
x=
√
y

x=y/2

dy

=

∫ 4

0

(
1

3
y3/2 + y5/2 − 13

24
y3

)
dy

=

(
2

15
y5/2 +

2

7
y7/2 − 13

96
y4

)∣∣∣∣∣
4

0

=
216

35



Key Points

Note that the region D in the previous problem could also be conceived
of as a type I region! Sometimes problems can be made much easier by
conceiving of a region as type I instead of type II, or vice versa. See the
exercises below for examples of this.

As has been mentioned a couple times already, Fubini’s theorem does not
hold for these integrals. If you wish to reverse the order of integration,
you must change your conception of D from type I to type II or vice
versa.

Properties

Many of the usual properties from single-variable calculus apply to double
integrals. For example:∫∫

D

[f (x , y) + g(x , y)] dA =

∫∫
D

f (x , y) dA +

∫∫
D

g(x , y) dA

and ∫∫
D

cf (x , y) dA = c

∫∫
D

f (x , y) dA

for a constant c .

If a region D may be written as D = D1 ∪ D2, where D1 and D2 do not
overlap, except perhaps on their boundaries, then:∫∫

D

f (x , y) dA =

∫∫
D1

f (x , y) dA +

∫∫
D2

f (x , y) dA

Properties, cont.

This latter property is useful, for example, in situations like the following.
Consider the region D below, which is neither type I nor type II:

Properties, cont.

Note that we can split D into two regions as follows:

D1 is type I and D2 is type II. Therefore, if we wanted to evaluate∫∫
D
f (x , y) dA, we could use the property above to do so.



Properties, cont.

One final property: Suppose we wanted to know the area of the base
region D, denoted A(D). It turns out that:

A(D) =

∫∫
D

1 dA

Why? Well,
∫∫

D
1 dA is the volume of the cylinder of height 1 and base

area D. The volume of such a cylinder is A(D) · 1.
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Exercises

1. Find the signed volume V1 of the solid that’s bounded by the
paraboloid z = x2 + y2 and the region D in the xy -plane bounded
by the line y = 2x and the parabola y = x2.

2. Evaluate
∫∫

R
xy dA, where R is the region in the xy -plane bounded

by the line y = x − 1 and the parabola x = y2 − 1 [Hint: After
sketching R, rewrite the equations of the boundaries of R so that it
becomes a type II region].

3. Evaluate
∫∫

D
sin(y2) dA where D is the region in the xy -plane

bounded by the lines y = 1, x = 0, and y = x . [Hint: Think
carefully about whether you should conceive of D as a type I or a
type II region].

4. Find the signed volume V4 of the tetrahedron bounded by the planes
x + 2y + z = 2, x = 2y , x = 0, and z = 0. [Hint: Conceive of this
as a double integral after making two sketches: one of the
tetrahedron, and one of the base region D in the xy -plane].

Solutions

1. V1 = 216
35

2.
∫∫

R
xy dA = 27

8

3.
∫∫

D
sin(y2) dA = −1

2 cos(1) + 1
2

4. V4 =
∫ 1

0

∫ 1−x/2
x/2

(2− x − 2y) dy dx = 1
3
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