15.2: Double Integrals Over General Regions

Julia Jackson

Department of Mathematics The University of Oklahoma

Fall 2021

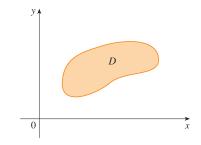
In the previous section we learned to evaluate the double integral of a two-variable function over a rectangular subset of its domain, i.e., to find the net signed volume of the solid bounded by a rectangle in the *xy*-plane and a surface. This raises a question: how could we find the signed volume of a solid that lies between a surface and some other shape in the *xy*-plane? In this and the next section, we will learn techniques for solving such problems.

Table of Contents

Double Integrals Over General Regions

The Setup

Suppose that we wish to find the signed volume of the solid that lies between the graph of a continuous function f(x, y) and a subset of its domain in the *xy*-plane such as the following:



Before we begin solving this problem, we introduce some notation: borrowing the language and notation of the previous section for this new problem, we refer to this signed volume as the double integral of f(x, y)over D:

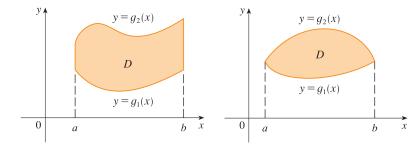
 $\iint_{D} f(x, y) \, \mathrm{d}A$

The Technique

To evaluate such integrals, we first need some definitions. A region D in the plane is said to be a **type I** region if it lies between two continuous functions of x, i.e.

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

For example:



The Technique, cont.

Analogous to our work over rectangles, we have the following:

If f(x, y) is a continuous function on a type I region D given by

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

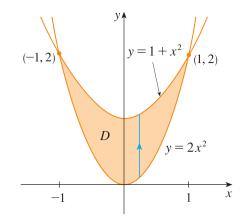
$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

Note: The order of integration matters here! Fubini's theorem does not hold for such integrals.

Example

Evaluate $I = \iint_D (x + 2y) dA$ where D is the region in the xy-plane bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

Let's first sketch the region *D*:



Example, cont.

We note, then, that D may be described as a type I region as follows:

$$D = \left\{ (x,y) \; \left| \; -1 \le x \le 1, 2x^2 \le y \le 1 + x^2 \right\}
ight.$$

Therefore, we have:

$$I = \iiint_{D} (x+2y) dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x+2y) dy dx$$

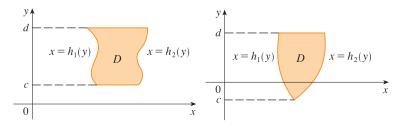
= $\int_{-1}^{1} (xy+y^{2}) \Big|_{y=2x^{2}}^{y=1+x^{2}} dx$
= $\int_{-1}^{1} (-3x^{4}-x^{3}+2x^{2}+x+1) dx$
= $\left(\frac{-3}{5}x^{5}-\frac{x^{4}}{4}+\frac{2}{3}x^{3}+\frac{1}{2}x^{2}+x\right) \Big|_{-1}^{1} = \boxed{\frac{32}{15}}$

Type II Regions

Of course, our regions might not always be bounded by two functions of x; they could, for example, be bounded by two functions of y. More precisely, a region D in the plane is said to be a **type II** region if it lies between two continuous functions of y, i.e.

$$D = \left\{ (x, y) | c \leq y \leq d, h_1(y) \leq x \leq h_2(y) \right\}$$

For example:



Integrals

The method of evaluating a double integral over a type II region is analogous to evaluating a double integral over a type I region:

If f(x, y) is a continuous function on a type II region D given by

$$D = \left\{ (x, y) | c \leq y \leq d, h_1(y) \leq x \leq h_2(y) \right\}$$

then

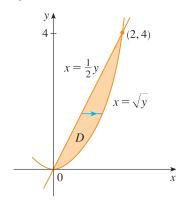
$$\iint_D f(x,y) \, \mathrm{d}A = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Again, the order of integration matters; Fubini's theorem only holds when integrating over rectangles, not here.

Example

Find the signed volume V of the solid that lies between the paraboloid $z = x^2 + y^2$ and the region D in the xy-plane bounded by the line $x = \frac{y}{2}$ and the parabola $x = \sqrt{y}$.

Let's begin by sketching D:



Example, cont.

V

Now, note that we can think of D as a type II region:

$$D = \left\{ (x, y) \mid 0 \le y \le 4, \frac{y}{2} \le x \le \sqrt{y} \right\}$$

Therefore, we have:

$$= \iint_{D} (x^{2} + y^{2}) dA = \int_{0}^{4} \int_{y/2}^{\sqrt{y}} (x^{2} + y^{2}) dx dy$$

$$= \int_{0}^{4} \left(\frac{x^{3}}{3} + xy^{2} \right) \Big|_{x=y/2}^{x=\sqrt{y}} dy$$

$$= \int_{0}^{4} \left(\frac{1}{3} y^{3/2} + y^{5/2} - \frac{13}{24} y^{3} \right) dy$$

$$= \left(\frac{2}{15} y^{5/2} + \frac{2}{7} y^{7/2} - \frac{13}{96} y^{4} \right) \Big|_{0}^{4} = \boxed{\frac{216}{35}}$$

Key Points

Note that the region D in the previous problem could also be conceived of as a type I region! Sometimes problems can be made much easier by conceiving of a region as type I instead of type II, or vice versa. See the exercises below for examples of this.

As has been mentioned a couple times already, Fubini's theorem *does not hold* for these integrals. If you wish to reverse the order of integration, you *must* change your conception of D from type I to type II or vice versa.

Properties

Many of the usual properties from single-variable calculus apply to double integrals. For example:

$$\iint_D [f(x,y) + g(x,y)] \, \mathrm{d}A = \iint_D f(x,y) \, \mathrm{d}A + \iint_D g(x,y) \, \mathrm{d}A$$

and

$$\iint_D cf(x,y) \, \mathrm{d}A = c \iint_D f(x,y) \, \mathrm{d}A$$

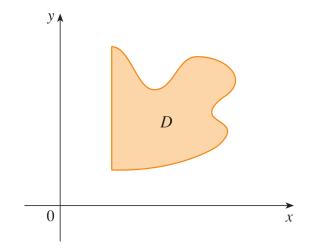
for a constant c.

If a region D may be written as $D = D_1 \cup D_2$, where D_1 and D_2 do not overlap, except perhaps on their boundaries, then:

$$\iint_D f(x,y) \, \mathrm{d}A = \iint_{D_1} f(x,y) \, \mathrm{d}A + \iint_{D_2} f(x,y) \, \mathrm{d}A$$

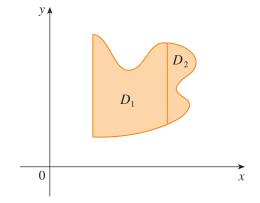
Properties, cont.

This latter property is useful, for example, in situations like the following. Consider the region D below, which is neither type I nor type II:



Properties, cont.

Note that we can split D into two regions as follows:



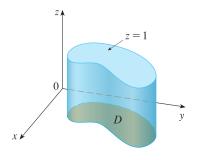
 D_1 is type I and D_2 is type II. Therefore, if we wanted to evaluate $\iint_D f(x, y) dA$, we could use the property above to do so.

Properties, cont.

One final property: Suppose we wanted to know the area of the base region D, denoted A(D). It turns out that:

$$A(D) = \iint_D 1 \, \mathrm{d}A$$

Why? Well, $\iint_D 1 \, dA$ is the volume of the cylinder of height 1 and base area D. The volume of such a cylinder is $A(D) \cdot 1$.



Exercises

Table of Contents

Exercises

- 1. Find the signed volume V_1 of the solid that's bounded by the paraboloid $z = x^2 + y^2$ and the region D in the *xy*-plane bounded by the line y = 2x and the parabola $y = x^2$.
- 2. Evaluate $\iint_R xy \, dA$, where R is the region in the xy-plane bounded by the line y = x - 1 and the parabola $x = y^2 - 1$ [Hint: After sketching R, rewrite the equations of the boundaries of R so that it becomes a type II region].
- 3. Evaluate $\iint_D \sin(y^2) dA$ where D is the region in the xy-plane bounded by the lines y = 1, x = 0, and y = x. [Hint: Think carefully about whether you should conceive of D as a type I or a type II region].
- 4. Find the signed volume V_4 of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and z = 0. [Hint: Conceive of this as a double integral after making two sketches: one of the tetrahedron, and one of the base region D in the xy-plane].

Solutions

1.
$$V_1 = \frac{216}{35}$$

2. $\iint_R xy \, dA = \frac{27}{8}$
3. $\iint_D \sin(y^2) \, dA = \frac{-1}{2} \cos(1) + \frac{1}{2}$
4. $V_4 = \int_0^1 \int_{x/2}^{1-x/2} (2-x-2y) \, dy \, dx = \frac{1}{3}$